期刊文献+
共找到2,978篇文章
< 1 2 149 >
每页显示 20 50 100
Nonlinear dynamics of a circular curved cantilevered pipe conveying pulsating fluid based on the geometrically exact model
1
作者 Runqing CAO Zilong GUO +2 位作者 Wei CHEN Huliang DAI Lin WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期261-276,共16页
Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid... Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid-structure interaction(FSI)between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes,especially when the pipe is highly flexible and usually undergoes large deformations.In this work,the geometrically exact model(GEM)for a curved cantilevered pipe conveying pulsating fluid is developed based on the extended Hamilton's principle.The stability of the curved pipe with three different subtended angles is examined with the consideration of steady fluid flow.Specific attention is concentrated on the large-deformation resonance of circular pipes conveying pulsating fluid,which is often encountered in practical engineering.By constructing bifurcation diagrams,oscillating shapes,phase portraits,time traces,and Poincarémaps,the dynamic responses of the curved pipe under various system parameters are revealed.The mean flow velocity of the pulsating fluid is chosen to be either subcritical or supercritical.The numerical results show that the curved pipe conveying pulsating fluid can exhibit rich dynamical behaviors,including periodic and quasi-periodic motions.It is also found that the preferred instability type of a cantilevered curved pipe conveying steady fluid is mainly in the flutter of the second mode.For a moderate value of the mass ratio,however,a third-mode flutter may occur,which is quite different from that of a straight pipe system. 展开更多
关键词 curved pipe conveying fluid pulsating fluid geometrically exact model(GEM) nonlinear dynamics parametric vibration FLUTTER
下载PDF
Quantum geometric tensor and the topological characterization of the extended Su-Schrieffer-Heeger model
2
作者 曾相龙 赖文喜 +1 位作者 魏祎雯 马余全 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期260-265,共6页
We investigate the quantum metric and topological Euler number in a cyclically modulated Su-Schrieffer-Heeger(SSH)model with long-range hopping terms.By computing the quantum geometry tensor,we derive exact expression... We investigate the quantum metric and topological Euler number in a cyclically modulated Su-Schrieffer-Heeger(SSH)model with long-range hopping terms.By computing the quantum geometry tensor,we derive exact expressions for the quantum metric and Berry curvature of the energy band electrons,and we obtain the phase diagram of the model marked by the first Chern number.Furthermore,we also obtain the topological Euler number of the energy band based on the Gauss-Bonnet theorem on the topological characterization of the closed Bloch states manifold in the first Brillouin zone.However,some regions where the Berry curvature is identically zero in the first Brillouin zone result in the degeneracy of the quantum metric,which leads to ill-defined non-integer topological Euler numbers.Nevertheless,the non-integer"Euler number"provides valuable insights and an upper bound for the absolute values of the Chern numbers. 展开更多
关键词 quantum geometric tensor topological Euler number Chern number Berry curvature quantum metric Su-Schrieffer-Heeger(SSH)model
原文传递
Evaluation of the effect of geometrical parameters on stope probability of failure in the open stoping method using numerical modeling 被引量:12
3
作者 Shahriyar Heidarzadeh Ali Saeidi Alain Rouleau 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第3期399-408,共10页
Stress-induced failure is among the most common causes of instability in Canadian deep underground mines.Open stoping is the most widely practiced underground excavation method in these mines,and creates large stopes ... Stress-induced failure is among the most common causes of instability in Canadian deep underground mines.Open stoping is the most widely practiced underground excavation method in these mines,and creates large stopes which are subjected to stress-induced failure.The probability of failure(POF)depends on many factors,of which the geometry of an open stope is especially important.In this study,a methodology is proposed to assess the effect of stope geometrical parameters on the POF,using numerical modelling.Different ranges for each input parameter are defined according to previous surveys on open stope geometry in a number of Canadian underground mines.A Monte-Carlo simulation technique is combined with the finite difference code FLAC3D,to generate model realizations containing stopes with different geometrical features.The probability of failure(POF)for different categories of stope geometry,is calculated by considering two modes of failure;relaxation-related gravity driven(tensile)failure and rock mass brittle failure.The individual and interactive effects of stope geometrical parameters on the POF,are analyzed using a general multi-level factorial design.Finally,mathematical optimization techniques are employed to estimate the most stable stope conditions,by determining the optimal ranges for each stope’s geometrical parameter. 展开更多
关键词 STOPE stability STOPE geometrical parameters PROBABILITY of failure General FACTORIAL design Numerical modeling Sublevel OPEN STOPING
下载PDF
Mathematical Model and Geometrical Model of Double Pitch ZN-type Worm Gear Set Based on Generation Mechanism 被引量:2
4
作者 SHU Linsen CAO Huajun +2 位作者 LI Xianchong ZHANG Chenglong LI Yuxia 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第3期549-555,共7页
The current researches on the tooth surface mathematical equations and the theory of gearing mainly pay attention to the ordinary type worm gear set(e.g., ZN, ZA, or ZK). The research of forming mechanism and three-... The current researches on the tooth surface mathematical equations and the theory of gearing mainly pay attention to the ordinary type worm gear set(e.g., ZN, ZA, or ZK). The research of forming mechanism and three-dimensional modeling method for the double pitch worm gear set is not enough. So there are some difficulties in mathematical model deducing and geometry modeling of double pitch ZN-type worm gear set based on generation mechanism. In order to establish the mathematical model and the precise geometric model of double pitch ZN-type worm gear set, the structural characteristics and generation mechanism of the double pitch ZN-type worm gear set are investigated. Mathematical model of the ZN-type worm gear set is derived based on its generation mechanism and the theory of gearing. According to the mathematical model of the worm gear set which has been developed, a geometry modeling method of the double pitch ZN-type worm and worm gear is presented. Furthermore, a geometrical precision calculate method is proposed to evaluate the geometrical quality of the double pitch worm gear set. As a result, the maximum error is less than 6′10–4 mm in magnitude, thus the model of the double pitch ZN-type worm gear set is available to meet the requirements of finite element analysis and engineering application. The derived mathematical model and the proposed geometrical modeling method are helpful to guiding the design, manufacture and contact analysis of the worm gear set. 展开更多
关键词 double pitch ZN-type worm gear set generation mechanism mathematical model geometrical model
下载PDF
Spatial Expression of Assembly Geometric Errors for Multi-axis Machine Tool Based on Kinematic Jacobian-Torsor Model
5
作者 Ang Tian Shun Liu +2 位作者 Kun Chen Wei Mo Sun Jin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期234-248,共15页
Assembly geometric error as a part of the machine tool system errors has a significant influence on the machining accuracy of the multi-axis machine tool.And it cannot be eliminated due to the error propagation of com... Assembly geometric error as a part of the machine tool system errors has a significant influence on the machining accuracy of the multi-axis machine tool.And it cannot be eliminated due to the error propagation of components in the assembly process,which is generally non-uniformly distributed in the whole working space.A comprehensive expression model for assembly geometric error is greatly helpful for machining quality control of machine tools to meet the demand for machining accuracy in practice.However,the expression ranges based on the standard quasistatic expression model for assembly geometric errors are far less than those needed in the whole working space of the multi-axis machine tool.To address this issue,a modeling methodology based on the Jacobian-Torsor model is proposed to describe the spatially distributed geometric errors.Firstly,an improved kinematic Jacobian-Torsor model is developed to describe the relative movements such as translation and rotation motion between assembly bodies,respectively.Furthermore,based on the proposed kinematic Jacobian-Torsor model,a spatial expression of geometric errors for the multi-axis machine tool is given.And simulation and experimental verification are taken with the investigation of the spatial distribution of geometric errors on five four-axis machine tools.The results validate the effectiveness of the proposed kinematic Jacobian-Torsor model in dealing with the spatial expression of assembly geometric errors. 展开更多
关键词 geometric error Machine tool Jacobian-Torsor model TOLERANCE Spatial expression
下载PDF
Algorithmic approach to discrete fracture network flow modeling in consideration of realistic connections in large-scale fracture networks
6
作者 Qihua Zhang Shan Dong +2 位作者 Yaoqi Liu Junjie Huang Feng Xiong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3798-3811,共14页
Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual conne... Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual connections of large-scale fractures.Notably,this model efficiently manages over 20,000 fractures without necessitating adjustments to the DFN geometry.All geometric analyses,such as identifying connected fractures,dividing the two-dimensional domain into closed loops,triangulating arbitrary loops,and refining triangular elements,are fully automated.The analysis processes are comprehensively introduced,and core algorithms,along with their pseudo-codes,are outlined and explained to assist readers in their programming endeavors.The accuracy of geometric analyses is validated through topological graphs representing the connection relationships between fractures.In practical application,the proposed model is employed to assess the water-sealing effectiveness of an underground storage cavern project.The analysis results indicate that the existing design scheme can effectively prevent the stored oil from leaking in the presence of both dense and sparse fractures.Furthermore,following extensive modification and optimization,the scale and precision of model computation suggest that the proposed model and developed codes can meet the requirements of engineering applications. 展开更多
关键词 Discrete fracture network(DFN)flow model geometric algorithm Fracture flow Water-sealing effect
下载PDF
Geometrical Modeling by NURBS Surface and RCS Computing by Visualization for Complex Targets
7
作者 Zhou, Yong Liu, Tiejun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1997年第1期13-21,共9页
A novel approach to compute the high frequency radar cross-section (RCS) of complex targets is described in this paper.From the three views or the sectional views of the target, target is geometrically modeled by non-... A novel approach to compute the high frequency radar cross-section (RCS) of complex targets is described in this paper.From the three views or the sectional views of the target, target is geometrically modeled by non-uniform rational B-spline (NURBS) parametric surfaces using the software CNFEOV developed by oneself which constructs NURBS representation of complex target from engineering orthographic views. RCS is obtained through PO, PTD, MEC and IBC techniques. When calculating RCS of the target, it is necessary to get the unit normal vector to surface illumi- nated by radar and the value Z which is the distance from the point on the surface to radar. ln this novel approach, the unit normal vector to the surface can be obtained either by the Phong rendering model, in which the color components (RGB) of every pixel on the image are equal to the coordinate components of the normal, or by the NURBS expressions. The value Z can be achieved by software or hardware Z-buffer. The effects of the size of image on the RCS of target are discussed and the correct method is recommended. The RCS of the perfect conducting sphere, cylinder and dihedral as well as the coated cylinder, as some examples, are computed. The accuracy of the method is verified by comparing the numerical results with those obtained by using other methods. 展开更多
关键词 RCS Visualization computation geometrical modeling.
下载PDF
Analysis of Modeling the Influence of Electromagnetic Fields Radiated by Industrial Static Converters and Impacts on Operators Using Maxwell’s Equations
8
作者 Anthony Bassesuka Sandoka Nzao Tuka Biaba Samuel Garcia +2 位作者 Obed Bitala Arsène Kasereka Kibwana Emmanuel Ndaye Kibuayi 《Open Journal of Applied Sciences》 2024年第8期2320-2350,共31页
The study of Electromagnetic Compatibility is essential to ensure the harmonious operation of electronic equipment in a shared environment. The basic principles of Electromagnetic Compatibility focus on the ability of... The study of Electromagnetic Compatibility is essential to ensure the harmonious operation of electronic equipment in a shared environment. The basic principles of Electromagnetic Compatibility focus on the ability of devices to withstand electromagnetic disturbances and not produce disturbances that could affect other systems. Imperceptible in most work situations, electromagnetic fields can, beyond certain thresholds, have effects on human health. The objective of the present article is focused on the modeling analysis of the influence of geometric parameters of industrial static converters radiated electromagnetic fields using Maxwell’s equations. To do this we used the analytical formalism for calculating the electromagnetic field emitted by a filiform conductor, to model the electromagnetic radiation of this device in the spatio-temporal domain. The interactions of electromagnetic waves with human bodies are complex and depend on several factors linked to the characteristics of the incident wave. To model these interactions, we implemented the physical laws of electromagnetic wave propagation based on Maxwell’s and bio-heat equations to obtain consistent results. These obtained models allowed us to evaluate the spatial profile of induced current and temperature of biological tissue during exposure to electromagnetic waves generated by this system. The simulation 2D results obtained from computer tools show that the temperature variation and current induced by the electromagnetic field can have a very significant influence on the life of biological tissue. The paper provides a comprehensive analysis using advanced mathematical models to evaluate the influence of electromagnetic fields. The findings have direct implications for workplace safety, potentially influencing standards and regulations concerning electromagnetic exposure in industrial settings. 展开更多
关键词 modelING Electromagnetic Field Power Converters geometric Parameters Biological Tissue Maxwell Equation Bio-Heat Equation Thermal model
下载PDF
The Hawking Hubble Temperature as the Minimum Temperature, the Planck Temperature as the Maximum Temperature, and the CMB Temperature as Their Geometric Mean Temperature
9
作者 Espen Gaarder Haug Eugene Terry Tatum 《Journal of Applied Mathematics and Physics》 2024年第10期3328-3348,共21页
Using a rigorous mathematical approach, we demonstrate how the Cosmic Microwave Background (CMB) temperature could simply be a form of geometric mean temperature between the minimum time-dependent Hawking Hubble tempe... Using a rigorous mathematical approach, we demonstrate how the Cosmic Microwave Background (CMB) temperature could simply be a form of geometric mean temperature between the minimum time-dependent Hawking Hubble temperature and the maximum Planck temperature of the expanding universe over the course of cosmic time. This mathematical discovery suggests a re-consideration of Rh=ctcosmological models, including black hole cosmological models, even if it possibly could also be consistent with the Λ-CDM model. Most importantly, this paper contributes to the growing literature in the past year asserting a tightly constrained mathematical relationship between the CMB temperature, the Hubble constant, and other global parameters of the Hubble sphere. Our approach suggests a solid theoretical framework for predicting and understanding the CMB temperature rather than solely observing it.1. 展开更多
关键词 Hawking Temperature Planck Temperature CMB Temperature geometric Mean Compton Wavelength Hubble Sphere Cosmological models
下载PDF
A General Representation of Geometrical Solution Model for Predicting Ternary Thermodynamic Properties
10
作者 K.-C.Chou 《Rare Metals》 SCIE EI CAS CSCD 1989年第4期22-26,共5页
The existing geometrical solution models for predicting ternary thermodynamic properties from relevant binary ones have been analysed,and a general representation was proposed in an integral form on the bases of these... The existing geometrical solution models for predicting ternary thermodynamic properties from relevant binary ones have been analysed,and a general representation was proposed in an integral form on the bases of these models. 展开更多
关键词 A General Representation of geometrical Solution model for Predicting Ternary Thermodynamic Properties EG
下载PDF
Recognition Methods of Geometrical Images of Automata Models of Systems in Control Problem
11
作者 Anton Epifanov 《Journal of Mechanical Engineering Research》 2021年第2期21-31,共11页
The laws of functioning of discrete deterministic dynamical systems are investigated,presented in the form of automata models defined by geometric images.Due to the use of the apparatus of geometric images of automata... The laws of functioning of discrete deterministic dynamical systems are investigated,presented in the form of automata models defined by geometric images.Due to the use of the apparatus of geometric images of automata,developed by V.A.Tverdokhlebov,the analysis of automata models is carried out on the basis of the analysis of mathematical structures represented by geometric curves and numerical sequences.The purpose of present research is to further develop the mathematical apparatus of geometric images of automaton models of systems,including the development of new methods for recognizing automata by their geometric images,given both geometric curves and numerical sequences. 展开更多
关键词 Discrete deterministic dynamical system Mathematical model AUTOMATON geometric image of an automaton mapping geometric curve Sequence Recognition of geometric images of automata
下载PDF
Geometric Modeling of Rape (Brassica napus L.) during Seedling Stage
12
作者 赵丽丽 温维亮 +3 位作者 彭亚宇 郭新宇 陆声链 杜建军 《Agricultural Science & Technology》 CAS 2011年第7期1085-1087,共3页
[Objective] The paper was to study the geometric modeling of rape(Brassica napus L.) during seedling stage.[Method] Based on the analysis and observation of morphological structure and growth process of rape during ... [Objective] The paper was to study the geometric modeling of rape(Brassica napus L.) during seedling stage.[Method] Based on the analysis and observation of morphological structure and growth process of rape during seedling stage,a characteristic parameters-based three-dimensional mathematical model of rape and its visible method was proposed.The individual control parameters were extracted according to the morphological structures of various organs of rape.Different sizes of leaf and petiole model were constructed by using cubic Bézier surface.The cylinder with different upper and lower bottom area was adopted as the main stem model.Finally,three-dimensional reconstruction of whole Rape plant during seedling stage was achieved through the operations of rotation,scaling and splicing.[Result] This method had certain controllability,which was also easy and convenient,and could quickly use to build the geometric model of rape during seedling stage.[Conclusion] The results provided reference for study on structural model of rape. 展开更多
关键词 Bézier surface Brassica napus L geometric modeling VISUALIZATION
下载PDF
Failure Impact,Availability and Cost Analysis of PONs Based on a Network Geometric Model 被引量:1
13
作者 FERNANDEZ Alvaro STOL Norvald 《光子学报》 EI CAS CSCD 北大核心 2014年第S1期18-24,共7页
Passive Optical Networks(PONs)are considered as the preferred solution for broadband fibre-based access networks.This is because PONs present low cost deployment,low energy consumption and also meet high bandwidth dem... Passive Optical Networks(PONs)are considered as the preferred solution for broadband fibre-based access networks.This is because PONs present low cost deployment,low energy consumption and also meet high bandwidth demands from end users.In addition,end users expect a high availability for access networks,while operators are more concerned about reducing the failure impact(number of clients affected by failures).Moreover,operators are also interested in reducing the cost of the access network.This paper provides a deep insight into the consequences that the physical topology and design decisions cause on the availability,the failure impact and the cost of a PON.In order to do that,the physical layout of the PON deployment area is approximated by a network geometric model.A PON deployed according to the geometric model is then assessed in terms of failure impact,availability and cost.This way,the effects of different design decisions and the physical layout on these three parameters are evaluated.In addition,the tradeoffs between availability,failure impact and cost caused by planning decisions and the physical topology are identified and pinpointed. 展开更多
关键词 AVAILABILITY FAILURE IMPACT CAPITAL Expenditures Passive Optical Networks NETWORK geometric model
下载PDF
Prediction on the viscosity of multi-component melts with a new geometric model 被引量:1
14
作者 ZHENQiang LIWenchao 《Rare Metals》 SCIE EI CAS CSCD 2002年第3期179-181,共3页
A geometric model for calculating the viscosity of multi-component melt fromrelated binary physicochemistry properties was derived based on Chou's thermodynamic geometricmodel. The model derived was employed to pr... A geometric model for calculating the viscosity of multi-component melt fromrelated binary physicochemistry properties was derived based on Chou's thermodynamic geometricmodel. The model derived was employed to predict the viscosity of Au-Ag-Cu alloys. The results showthat the calculated viscosity for Au-Ag-Cu alloys meet the experimental data very well. In addition,the viscosity of Bi-Sn-In systems was also predicted with this model. 展开更多
关键词 geometric model VISCOSITY Au-Ag-Cu Bi-Sn-In
下载PDF
A Geometry-Based Non-Stationary MIMO Channel Model for Vehicular Communications 被引量:6
15
作者 Yuanyuan Ma Lei Yang Xianghan Zheng 《China Communications》 SCIE CSCD 2018年第7期30-38,共9页
This paper derives a non-stationary multiple-input multiple-output(MIMO) from the one-ring scattering model. The proposed channel model characterizes vehicular radio propagation channels with considerations of moving ... This paper derives a non-stationary multiple-input multiple-output(MIMO) from the one-ring scattering model. The proposed channel model characterizes vehicular radio propagation channels with considerations of moving base and mobile stations, which makes the angle of arrivals(AOAs) along with the angle of departures(AODs) time-variant. We introduce the methodology of including the time-variant impacts when characterizing non-stationary radio propagation channels through the geometrical channel modelling approach. We analyze the statistical properties of the proposed channel model including the local time-variant autocorrelation function(ACF) and the space cross-correlation functions(CCFs). We show that the model developed in this paper for non-stationary scenarios includes the existing one-ring wide-sense stationary channel model as its special case. 展开更多
关键词 vehicular communications mobile fading channels non-stationary channels multiple antennas geometrical channel modeling one-ring scattering model
下载PDF
Science Letters:Mask synthesis and verification based on geometric model for surface micro-machined MEMS 被引量:1
16
作者 李建华 刘玉生 高曙明 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第9期1007-1010,共4页
Traditional MEMS (microelectromechanical system) design methodology is not a structured method and has become an obstacle for MEMS creative design. In this paper, a novel method of mask synthesis and verification fo... Traditional MEMS (microelectromechanical system) design methodology is not a structured method and has become an obstacle for MEMS creative design. In this paper, a novel method of mask synthesis and verification for surface micro-machined MEMS is proposed, which is based on the geometric model of a MEMS device. The emphasis is focused on synthesizing the masks at the basis of the layer model generated from the geometric model of the MEMS device. The method is comprised of several steps: the correction of the layer model, the generation of initial masks and final masks including multi-layer etch masks, and mask simulation. Finally some test resuhs are given. 展开更多
关键词 MEMS CAD geometric model Layer model Mask synthesis Surface micromachining
下载PDF
Force modeling for needle insertion into soft tissue based on mechanical properties and geometric parameters 被引量:2
17
作者 宿志亮 Jiang Shan +1 位作者 Wang Xingji Yan Yu 《High Technology Letters》 EI CAS 2014年第3期295-300,共6页
The force model during needle insertion into soft tissue is important for accurate percutaneous intervention.In this paper,a force model for needle insertion into a tissue- equivalent material is presented and a serie... The force model during needle insertion into soft tissue is important for accurate percutaneous intervention.In this paper,a force model for needle insertion into a tissue- equivalent material is presented and a series of experiments are conducted to acquire data from needle soft- tissue interaction process.In order to build a more accurate insertion force model,the interaction force between a surgical needle and soft tissue is divided into three parts:stiffness force,friction force,and cutting force.The stiffness force is modeled on the basis of contact mechanics model.The friction force model is presented using a modified Winkler' s foundation model.The cutting force is viewed as a constant depending on a given tissue.The proposed models in the paper are established on the basis of the mechanical properties and geometric parameters of the needle and soft tissue.The experimental results illustrate that the force models are capable of predicting the needle-tissue interaction force.The force models of needle insertion can provide real-time haptic feedback for robot-assisted procedures,thereby improving the accuracy and safety of surgery. 展开更多
关键词 force modeling needle insertion soft tissue mechanical properties geometric parameters
下载PDF
Method of Soft-Sensor Modeling for Fermentation Process Based on Geometric Support Vector Regression 被引量:1
18
作者 吴佳欢 王晓琨 +2 位作者 王建林 赵利强 于涛 《Journal of Donghua University(English Edition)》 EI CAS 2013年第1期1-6,共6页
The soft-sensor modeling for fermentation process based on standard support vector regression(SVR) needs to solve the quadratic programming problem(QPP) which will often lead to large computational burdens, slow conve... The soft-sensor modeling for fermentation process based on standard support vector regression(SVR) needs to solve the quadratic programming problem(QPP) which will often lead to large computational burdens, slow convergence rate, low solving efficiency, and etc. In order to overcome these problems, a method of soft-sensor modeling for fermentation process based on geometric SVR is presented. In the method, the problem of solving the SVR soft-sensor model is converted into the problem of finding the nearest points between two convex hulls (CHs) or reduced convex hulls (RCHs) in geometry. Then a geometric algorithm is adopted to generate soft-sensor models of fermentation process efficiently. Furthermore, a swarm energy conservation particle swarm optimization (SEC-PSO) algorithm is proposed to seek the optimal parameters of the augmented training sample sets, the RCH size, and the kernel function which are involved in geometric SVR modeling. The method is applied to the soft-sensor modeling for a penicillin fermentation process. The experimental results show that, compared with the method based on the standard SVR, the proposed method of soft-sensor modeling based on geometric SVR for fermentation process can generate accurate soft-sensor models and has much less amount of computation, faster convergence rate, and higher efficiency. 展开更多
关键词 fermentation process soft-sensor modeling geometric SVR swarm energy conservation particle swarm optimization (SEC-PSO)
下载PDF
Modeling, identification and compensation for geometric errors of laser annealing table 被引量:1
19
作者 李殿新 张建富 +1 位作者 张云亮 冯平法 《Journal of Central South University》 SCIE EI CAS 2014年第3期904-911,共8页
In order to improve the process precision of an XY laser annealing table, a geometric error modeling, and an identification and compensation method were proposed. Based on multi-body system theory, a geometric error m... In order to improve the process precision of an XY laser annealing table, a geometric error modeling, and an identification and compensation method were proposed. Based on multi-body system theory, a geometric error model for the laser annealing table was established. It supports the identification of 7 geometric errors affecting the annealing accuracy. An original identification method was presented to recognize these geometric errors. Positioning errors of 5 lines in the workspace were measured by a laser interferometer, and the 7 geometric errors were identified by the proposed algorithm. Finally, a software-based error compensation method was adopted, and a compensation mechanism was developed in a postprocessor based on LabVIEW. The identified geometric errors can be compensated by converting ideal NC codes to actual NC codes. A validation experiment has been conducted on the laser annealing table, and the results indicate that positioning errors of two validation lines decreased from ±37 μm and ±33 μm to ±5 μm and ±4.5 μm, respectively. The geometric error modeling, identification and compensation method presented in this work can be straightforwardly extended to any configurations of 2-dimensional worktable. 展开更多
关键词 geometric error error modeling error measurement error identification error compensation laser annealing table
下载PDF
上一页 1 2 149 下一页 到第
使用帮助 返回顶部