期刊文献+
共找到211,753篇文章
< 1 2 250 >
每页显示 20 50 100
Two-dimensional plane strain consolidation of unsaturated soils considering the depth-dependent stress
1
作者 Lei Wang Sidong Shen +2 位作者 Tianyi Li Minjie Wen Annan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1603-1614,共12页
In practical engineering,the total vertical stress in the soil layer is not constant due to stress diffusion,and varies with time and depth.Therefore,the purpose of this paper is to investigate the effect of stress di... In practical engineering,the total vertical stress in the soil layer is not constant due to stress diffusion,and varies with time and depth.Therefore,the purpose of this paper is to investigate the effect of stress diffusion on the two-dimensional(2D)plane strain consolidation properties of unsaturated soils when the stress varies with time and depth.A series of semi-analytical solutions in terms of excess pore air and water pressures and settlement for 2D plane strain consolidation of unsaturated soils can be derived with the joint use of Laplace transform and Fourier sine series expansion.Then,the inverse Laplace transform of the semi-analytical solution is given in the time domain using a self-programmed code based on Crump’s method.The reliability of the obtained solutions is proved by the degeneration.Finally,the 2D plots of excess pore pressures and the curves of settlement varying with time,considering different physical parameters of unsaturated soil stratum and depth-dependent stress,are depicted and analyzed to study the 2D plane strain consolidation properties of unsaturated soils subjected to the depthdependent stress. 展开更多
关键词 Semi-analytical solutions Two-dimensional(2D)plane strain CONSOLIDATION unsaturated soils Depth-dependent stress Laplace transform
下载PDF
Implicit scheme for integrating constitutive model of unsaturated soils with coupling hydraulic and mechanical behavior 被引量:4
2
作者 马田田 韦昌富 +1 位作者 陈盼 魏厚振 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第9期1129-1154,共26页
A constitutive model of unsaturated soils with coupling capillary hysteresis and skeleton deformation is developed and implemented in a fully coupled transient hydro-mechanical finite-element model(computer code U-DYS... A constitutive model of unsaturated soils with coupling capillary hysteresis and skeleton deformation is developed and implemented in a fully coupled transient hydro-mechanical finite-element model(computer code U-DYSAC2).The obtained results are compared with experimental results,showing that the proposed constitutive model can simulate the main mechanical and hydraulic behavior of unsaturated soils in a unified framework.The non-linearity of the soil-water characteristic relation is treated in a similar way of elastoplasticity.Two constitutive relations are integrated by an implicit return-mapping scheme similar to that developed for saturated soils.A consistent tangential modulus is derived to preserve the asymptotic rate of the quadratic convergence of Newton's iteration.Combined with the integration of the constitutive model,a complete finite-element formulation of coupling hydro-mechanical problems for unsaturated soils is presented.A number of practical problems with different given initial and boundary conditions are analyzed to illustrate the performance and capabilities of the finite-element model. 展开更多
关键词 unsaturated soil capillary hysteresis elastoplastic coupling constitutive model stress integration finite-element method
下载PDF
Coupled hydro-mechanical analysis of slope under rainfall using modified elasto-plastic model for unsaturated soils 被引量:3
3
作者 王柳江 刘斯宏 +1 位作者 傅中志 李卓 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1892-1900,共9页
Two modifications for the basic Barcelona model(BBM) are present. One is the replacement of the net stress by the average skeleton stress in unsaturated soil modeling, and the other is the adoption of an expression fo... Two modifications for the basic Barcelona model(BBM) are present. One is the replacement of the net stress by the average skeleton stress in unsaturated soil modeling, and the other is the adoption of an expression for the load-collapse(LC) yield surface that can match flexibly the normal compression lines at different suctions. The predictions of the modified BBM for the controlled-suction triaxial test on the unsaturated compacted clay are presented and compared with the experimental results. A good agreement between the predicted and experimental results demonstrates the reasonability of the modified BBM. On this basis, the coupled processes of groundwater flow and soil deformation in a homogeneous soil slope under a long heavy rainfall are simulated with the proposed elasto-plastic model. The numerical results reveal that the failure of a slope under rainfall infiltration is due to both the reduction of soil suction and the significant rise in groundwater table. The evolution of the displacements is greatly related to the change of suction. The maximum collapse deformation happens near the surface of slope where infiltrated rainwater can quickly reach. The results may provide a helpful reference for hazard assessment and control of rainfall-induced landslides. 展开更多
关键词 unsaturated soils modified basic Barcelona model(BBM) numerical analysis rainfall infiltration model slope
下载PDF
Analysis of coupled thermo-hydro-mechanical behavior of unsaturated soils based on theory of mixtures I 被引量:1
4
作者 秦冰 陈正汉 +3 位作者 方振东 孙树国 方祥位 王驹 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第12期1561-1576,共16页
This paper analyzes a coupled thermo-hydro-mechanical behavior of unsaturated soils based on the theory of mixtures.Unsaturated soil is considered as a mixture composed of soil skeleton,liquid water,vapor,dry air,and ... This paper analyzes a coupled thermo-hydro-mechanical behavior of unsaturated soils based on the theory of mixtures.Unsaturated soil is considered as a mixture composed of soil skeleton,liquid water,vapor,dry air,and dissolved air.In addition to the mass and momentum conservation equations of each component and the energy conservation equation of the mixture,the system is closed using other 37 constitutive (or restriction) equations.As the change in water chemical potential is identical to the change in vapor chemical potential,a thermodynamic restriction relationship for the phase transition between pore water and pore vapor is formulated,in which the impact of the change in gas pressure on the phase transition is taken into account.Six final governing equations are given in incremental form in terms of six primary variables,i.e.,three displacement components of soil skeleton,water pressure,gas pressure,and temperature.The processes involved in the coupled model include thermal expansions of soil skeleton and soil particle,Soret effect,phase transition between water and vapor,air dissolution in pore water,and deformation of soil skeleton. 展开更多
关键词 unsaturated soil thermo-hydro-mechanical TEMPERATURE theory of mixtures
下载PDF
Cylindrical cavity expansion responses in anisotropic unsaturated soils under plane stress condition
5
作者 Haohua Chen Xiaolin Weng +1 位作者 Lele Hou Dean Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第6期1989-2002,共14页
In this paper,an anisotropic critical state model for saturated soils was extended to unsaturated conditions by introducing suction into its yield function.Combining this model with soil-water characteristic curves re... In this paper,an anisotropic critical state model for saturated soils was extended to unsaturated conditions by introducing suction into its yield function.Combining this model with soil-water characteristic curves related to porosity ratio was employed to characterize the coupled hydromechanical behavior of unsaturated anisotropic soil.Based on the plane stress condition,the problem of the cylindrical cavity expansion in unsaturated anisotropic soils was transformed into first-order differential equations using the Lagrangian description.The equations were solved as an initial value problem using the Runge-Kutta algorithm,which can reflect the soil-water retention behavior during cavity expansion.Parametric analyses were conducted to investigate the influences of overconsolidation ratio(OCR),suction,and degree of saturation on the expansion responses of a cylindrical cavity in unsaturated anisotropic soil under plane stress condition.The results show that the above factors have obvious influences on the cavity responses,and the plane strain solution tends to overestimate expansion pressure and degree of saturation but underestimates suction around the cavity compared to the proposed plane stress solution.The theoretical model proposed in this paper provides a reasonable and effective method for simulating pile installation and soil pressure gauge tests near the ground surface of the unsaturated soils. 展开更多
关键词 Cylindrical cavity Anisotropic unsaturated soil Plane stress Hydromechanical behavior
下载PDF
Seasonal influence on cone penetration test: An unsaturated soil site example
6
作者 Heraldo Luiz Giacheti Renan Cravera Bezerra +1 位作者 Breno Padovezi Rocha Roger Augusto Rodrigues 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2019年第2期361-368,共8页
Interpretation of electric cone penetration test(CPT) based pore water pressure measurement(CPTu) is well established for soils with behavior that follows classical soil mechanics. The literature on the interpretation... Interpretation of electric cone penetration test(CPT) based pore water pressure measurement(CPTu) is well established for soils with behavior that follows classical soil mechanics. The literature on the interpretation of these tests performed on unsaturated tropical soils is limited, and little is known about the influence of soil suction on in situ test data. In this context, the CPT data are presented and discussed to illustrate the seasonal variability in an unsaturated tropical soil site. The test data show that soil suction significantly influenced CPT data up to a depth of 4 m at the study site. It shows the importance of considering seasonal variability in unsaturated soil sites caused by soil suction, which was related to water content through a soil-water retention curve(SWRC). It is also important to consider this aspect in the interpretation of CPT data from these soils. 展开更多
关键词 Site investigation In situ testing Cone penetration test (CPT) unsaturated soil SUCTION VARIABILITY
下载PDF
Stability analysis of unsaturated soil slope during rainfall infiltration using coupled liquid-gas-solid three-phase model 被引量:12
7
作者 Dong-mei Sun Xiao-min Li +1 位作者 Ping Feng Yong-ge Zang 《Water Science and Engineering》 EI CAS CSCD 2016年第3期183-194,共12页
Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loos... Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loosely coupled liquid-gas-solid three-phase model, linking two numerical codes,TOUGH2/EOS3, which is used for water-air two-phase flow analysis, and FLAC^(3D), which is used for mechanical analysis, was established. The model was validated through a documented water drainage experiment over a sandy column and a comparison of the results with measured data and simulated results from other researchers. The proposed model was used to investigate the features of water-air two-phase flow and stress fields in an unsaturated soil slope during rainfall infiltration. The slope stability analysis was then performed based on the simulated water-air two-phase seepage and stress fields on a given slip surface. The results show that the safety factor for the given slip surface decreases first, then increases, and later decreases until the rainfall stops. Subsequently, a sudden rise occurs. After that, the safety factor decreases continually and reaches its lowest value, and then increases slowly to a steady value. The lowest value does not occur when the rainfall stops, indicating a delayed effect of the safety factor. The variations of the safety factor for the given slip surface are therefore caused by a combination of pore-air pressure, matric suction, normal stress, and net normal stress. 展开更多
关键词 COUPLED liquid-gas-solid three-phase model Pore-air pressure unsaturated soil slope stability Rainfall INFILTRATION
下载PDF
NONLINEAR AND ELASTO-PLASTICITY CONSOLIDATION MODELS OF UNSATURATED SOIL AND APPLICATIONS 被引量:2
8
作者 陈正汉 黄海 卢再华 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第1期105-117,共13页
The non-linear constitutive model suggested by the authors and the Alonso' s elasto-plasticity model of unsaturated soil modified by the authors are introduced into the consolidation theory of ursaturated soil pro... The non-linear constitutive model suggested by the authors and the Alonso' s elasto-plasticity model of unsaturated soil modified by the authors are introduced into the consolidation theory of ursaturated soil proposed by CHEN Zheng-han, and the non-linear and the elasto-plasticity consolidation models of unsaturated soil are obtained. Programs related to the two consolidation models are designed, and a 2-D consolidation problem of unsaturated soil is solved using the programs , the consolidation process and the development of plastic zone under multi-grade load are studied. The above research develops the consolidation theory of unsaturated soil to a new level. 展开更多
关键词 unsaturated soil NON-LINEAR ELASTO-PLASTICITY CONSOLIDATION FINITE ELEMENT method
下载PDF
CONSOLIDATION HEORY OF UNSATURATED SOIL BASED ON THE THEORY OF MIXTURE(Ⅰ) 被引量:2
9
作者 陈正汉 谢定义 刘祖典 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1993年第2期137-150,共14页
Unsaturated soil is a three-phase media and is composed of soil grain,water andgas.In this paper,the consolidation problem of unsaturated soil is investigated basedon the theory of mixture.A theoretical formula of eff... Unsaturated soil is a three-phase media and is composed of soil grain,water andgas.In this paper,the consolidation problem of unsaturated soil is investigated basedon the theory of mixture.A theoretical formula of effective stress on anisotropicporous media and unsaturated soil is derived.The principle of effective stress and theprinciple of Curie symmetry are taken as two fundamental constitutive principles ofunsaturated soil.A mathematical model of consolidation of unsaturated soil isproposed,which consists of25 partial differenfial equations with25 unknowns.Withthe help of increament linearizing method,the model is reduced to5 governingequations with5 unknowns,i.e.,the three displacement components of solid phase,thepore water pressure and the pore gas pressure.7 material parameters are involved inthe model and all of them can be measured using soil tests.It is convenient to use themodel to engineering practice.The well known Biot’s theory is a special case of themodel. 展开更多
关键词 unsaturated soil CONSOLIDATION theory of MIXTURE effective stress the PRINCIPLE of CURIE SYMMETRY
下载PDF
Moisture transfer and phase change in unsaturated soils: an experimental study of two types of canopy effect 被引量:2
10
作者 Zuo Yue He Ji Dong Teng +1 位作者 Sheng Zhang Dai Chao Sheng 《Research in Cold and Arid Regions》 CSCD 2017年第3期243-249,共7页
Canopy effect refers to the phenomenon in which moisture accumulates underneath an impervious cover.A canopy effect can lead to full saturation of the soil underneath the impervious cover.A recent theoretical study se... Canopy effect refers to the phenomenon in which moisture accumulates underneath an impervious cover.A canopy effect can lead to full saturation of the soil underneath the impervious cover.A recent theoretical study separates the canopy effect into two types.The first one is caused by evaporation-condensation in unsaturated soils,while the second one is induced by freezing-enhanced vapour transfer in unsaturated soils.To validate experimentally these two types of canopy effect and to reveal their mechanisms,moisture-migration experiments were carried out,using a newly developed laboratory apparatus for unsaturated frozen soils.Six conditions were applied to the calcareous sand,with different initial water contents and boundary temperatures.The results show that water content in the upper portion of the sample increased under an upward temperature gradient,and the increment of water content was greater if the soil was subjected to freezing.For the freezing cases,the depth of the peak water content was in line with the freezing front.And the greater the initial water content,the more the water content accumulated at the freezing front.However,a lower cooling rate seemed to facilitate vapour migration.For the unfrozen cases,the water content in the upper portion of the sample also increased;and the increases became more apparent with a higher initial moisture content.The temperature gradient can also inhibit the vapour migration.A less steep temperature gradient always resulted in a more notable inhibition effect.Test results seem to verify the theory of the canopy effect. 展开更多
关键词 unsaturated soil liquid water-vapour MIGRATION FREEZING test CANOPY EFFECT
下载PDF
NONLINEAR AND ELASTO_PLASTICITY CONSOLIDATION MODELS OF UNSATURATED SOIL AND APPLICATIONS 被引量:34
11
作者 陈正汉 黄 海 卢再华 《应用数学和力学》 EI CSCD 北大核心 2001年第1期93-103,共11页
The non_linear constitutive model suggested by the authors and the Alonso’s elasto_plasticity model of unsaturated soil modified by the authors are introduced into the consolidation theory of unsaturated soil propose... The non_linear constitutive model suggested by the authors and the Alonso’s elasto_plasticity model of unsaturated soil modified by the authors are introduced into the consolidation theory of unsaturated soil proposed by CHEN Zheng_han, and the non_linear and the elasto_plasticity consolidation models of unsaturated soil are obtained. Programs related to the two consolidation models are designed, and a 2_D consolidation problem of unsaturated soil is solved using the programs, the consolidation process and the development of plastic zone under multi_grade load are studied. The above research develops the consolidation theory of unsaturated soil to a new level. 展开更多
关键词 非饱和土 有限元 非线性固结模型 本构关系 弹塑性固结模型
下载PDF
An Unsaturated Soil Water Flow Problemand Its Numerical Simulation 被引量:1
12
作者 谢正辉 戴永久 曾庆存 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1999年第2期183-196,共14页
1.IntroductionUnsaturatedsoilwaterflowisaflowwherewaterisnotfullofsoilhole,whichisanimportantformofflowinporousmedia.Predictionofanunsaturatedflowisprovidedwithsignificanceinmanybranchesofscienceandengineering.Thesein... 1.IntroductionUnsaturatedsoilwaterflowisaflowwherewaterisnotfullofsoilhole,whichisanimportantformofflowinporousmedia.Predictionofanunsaturatedflowisprovidedwithsignificanceinmanybranchesofscienceandengineering.Theseincludeatmosphericscience,soilscien... 展开更多
关键词 unsaturated flow FINITE ELEMENT MASS LUMPING NUMERICAL simulation
下载PDF
Creep model for unsaturated soils in sliding zone of Qianjiangping landslide 被引量:10
13
作者 Liangchao Zou Shimei Wang Xiaoling Lai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第2期162-167,共6页
The mechanical behavior of sliding zone soils plays a significant role in landslide. In general, the sliding zone soils are basically in unsaturated state due to rainfall infiltration and reservoir water level fluctua... The mechanical behavior of sliding zone soils plays a significant role in landslide. In general, the sliding zone soils are basically in unsaturated state due to rainfall infiltration and reservoir water level fluctuation. Meanwhile, a large number of examples show that the deformation processes of landslides always take a long period of time, indicating that landslides exhibit a time-dependent property. Therefore, the deformation of unsaturated soils of landslide involves creep behaviors. In this paper, the Burgers creep model for unsaturated soils under triaxial stress state is considered based on the unsaturated soil mechanics. Then, by curve fitting using the least squares method, creep parameters in different matric suction states are obtained based on the creep test data of unsaturated soils in the sliding zones of Qianjiangping landslide. Results show that the predicted results are in good agreement with the experimental data. Finally, to further explore the creep characteristics of the unsaturated soils in sliding zones, the relationships between parameters of the model and matric suction are analyzed and a revised Burgers creep model is developed correspondingly. Simulations on another group of test data are performed by using the modified Burgers creep model and reasonable results are observed. 展开更多
关键词 非饱和土力学 蠕变模型 滑坡变形 三轴应力状态 滑带 滑动带土 时间变化 最小二乘法
下载PDF
An Analytical Solution for One-Dimensional Water Infiltration and Redistribution in Unsaturated Soil 被引量:7
14
作者 WANG Quan-Jiu R. HORTON FAN Jun 《Pedosphere》 SCIE CAS CSCD 2009年第1期104-110,共7页
Soil infiltration and redistribution are important processes in field water cycle, and it is necessary to develop a simple model to describe the processes. In this study, an algebraic solution for one-dimensional wate... Soil infiltration and redistribution are important processes in field water cycle, and it is necessary to develop a simple model to describe the processes. In this study, an algebraic solution for one-dimensional water infiltration and redistribution without evaporation in unsaturated soil was developed based on Richards equation. The algebraic solution had three parameters, namely, the saturated water conductivity, the comprehensive shape coefflcient of the soil water content distribution, and the soil suction allocation coefficient. To analyze the physical features of these parameters, a relationship between the Green-Ampt model and the algebraic solution was established. The three parameters were estimated based on experimental observations, whereas the soil water content and the water infiltration duration were calculated using the algebraic solution. The calculated soil water content and infiltration duration were compared with the experimental observations, and the results indicated that the algebraic solution accurately described the unsaturated soil water flow processes. 展开更多
关键词 代数解 GREEN-AMPT模型 土壤水分渗透 不饱和土壤
下载PDF
A Flexible Model for Moisture-Suction Relationship for Unsaturated Soils and Its Application 被引量:1
15
作者 Nadarajah Ravichandran Shada H. Krishnapillai 《International Journal of Geosciences》 2011年第3期204-213,共10页
The mathematical equation for the moisture-suction relationship also known as soil water characteristic curve (SWCC) is one of the constitutive relations necessary for the computational modeling of deformation and flo... The mathematical equation for the moisture-suction relationship also known as soil water characteristic curve (SWCC) is one of the constitutive relations necessary for the computational modeling of deformation and flow problems of unsaturated soil using the finite element method. In this paper, a new empirical equa-tion for the SWCC is developed that incorporates the actual airentry suction and the maximum possible suction of the soil as input parameters. The capability of the new model is investigated by fitting the experimental data for twelve different soils that includes sands, silts, and clays. The model fits the experimental data well including in high suction range which is one of the difficulties observed in other commonly used models such as the Brooks and Corey, van Genuchten, and Fredlund and Xing models. The numerical stability and the performance of the new model at low and high degrees of saturations in finite element simulation are investigated by simulating the dynamic response of a compacted embankment and the results are compared with similar predictions made using widely used SWCC models. 展开更多
关键词 soil-WATER CHARACTERISTIC Curve unsaturated soils SWCC for Low Degree of Saturation Moisture-Suction RELATIONSHIP Comparison of soil-WATER CHARACTERISTIC Curves
下载PDF
Stability analysis of an unsaturated soil slope considering rainfall infiltration based on the Green-Ampt model 被引量:5
16
作者 LIU Zi-zhen YAN Zhi-xin +2 位作者 QIU Zhan-hong WANG Xiao-gang LI Ji-wei 《Journal of Mountain Science》 SCIE CSCD 2020年第10期2577-2590,共14页
Based on the principle of saturated infiltration and the Green-Ampt model,an unsaturated infiltration model for a soil slope surface was established for either constant moisture content,or depth-varying moisture conte... Based on the principle of saturated infiltration and the Green-Ampt model,an unsaturated infiltration model for a soil slope surface was established for either constant moisture content,or depth-varying moisture content and the slope.Infiltration parameters in the partially saturated slope were revealed under sustained rainfall.Through analysis of the variation of initial moisture content in the slope,the ponding time,infiltration depth,and infiltration rate were deduced for an unsaturated soil slope subject to rainfall infiltration.There is no ponded water on the surface of the slope under sustained low-intensity rainfall.The results show that the infiltration parameters of an unsaturated slope are influenced by the initial moisture content and the wetting front saturation,the soil cohesion and rainfall intensity under sustained rainfall.More short-term slope failures can occur with the decrease of cohesion of the soil of the slope.The ponding time and infiltration depth differ considering constant or different initial moisture content respectively in the soil slope.Then,best-fit curves of the infiltration rate,ponding time,and infiltration depth to the wetting front saturation were obtained with constant or different initial moisture contents.And the slope failure time is roughly uniform when subject to a rainfall intensity I>5 mm/h. 展开更多
关键词 Rainfall infiltration unsaturated infiltration model Wetting front saturation Slope safety factor
原文传递
Impacts of Soil Moisture Content and Vegetation on Shear Strength of Unsaturated Soil 被引量:2
17
作者 YANGYong-hong ZHANGJian-guo +3 位作者 ZHANGJian-hui LIUShu-zhe WANGCheng-hua XIAOQing-hua 《Wuhan University Journal of Natural Sciences》 EI CAS 2005年第4期682-688,共7页
It is analyzed that the impacts of vegetation type and soil moisture content on shear strength of unsaturated soil through direct shearing tests for various vegetation types, different soil moisture contents and diffe... It is analyzed that the impacts of vegetation type and soil moisture content on shear strength of unsaturated soil through direct shearing tests for various vegetation types, different soil moisture contents and different-depth unsaturated soil. The results show that the cohesion of unsaturated soil changes greatly, and the friction angle changes a little with soil moisture content. It is also shown that vegetation can improve shear strength of unsaturated soil, which therefore provides a basis that vegetation can reinforce soil and protect slopes. 展开更多
关键词 不饱和土壤 水含量 植被类型 斜坡保护 土壤压力
下载PDF
Recent developments of generalized plasticity models for saturated and unsaturated soils 被引量:2
18
作者 Hong-en LI Yong-jun HE +2 位作者 Guang-ya FAN Tong-chun LI Manuel PASTOR 《Water Science and Engineering》 EI CAS 2011年第3期329-344,共16页
Soil undergoes both elastic and plastic deformations under different loading conditions. A relatively accurate constitutive model of soil behaviors should be capable of predicting the elastic and plastic deformations ... Soil undergoes both elastic and plastic deformations under different loading conditions. A relatively accurate constitutive model of soil behaviors should be capable of predicting the elastic and plastic deformations properly. Among a large number of elastoplastic constitutive models developed over the last several decades, constitutive models based on generalized plasticity have been successfully utilized in modeling the mechanical behavior of various soils. This paper attempts to present a review of the most recent developments of generalized plasticity models for geotechnical problems. After a brief review of generalized plasticity theories and constitutive models, limitations of the original Pastor-Zienkiewicz model in practical application are summarized. Afterwards, recent achievements in the generalized plasticity models for both saturated and unsaturated soils and their applicability are analyzed, and a general approach for modification of generalized plasticity models is highlighted. 展开更多
关键词 广义塑性理论 塑性模型 非饱和土 弹塑性本构模型 岩土工程问题 塑性变形 行为建模 饱和脂肪酸
下载PDF
Reasonable selection of yield criteria for quantitative analysis of unsaturated soil slope stability 被引量:2
19
作者 LIU Zi-zhen YAN Zhi-xin +2 位作者 REN Zhi-hua QIU Zhan-hong DUAN Jian 《Journal of Mountain Science》 SCIE CSCD 2016年第7期1304-1312,共9页
The yield criterion parameters of the soil material change with different values of the cohesion and the angle of friction because of sustained rainfall infiltration. Based on the Mohr-Coulomb(M-C) and Drucker-Prager(... The yield criterion parameters of the soil material change with different values of the cohesion and the angle of friction because of sustained rainfall infiltration. Based on the Mohr-Coulomb(M-C) and Drucker-Prager(D-P) yield criteria, some reasonable yield criteria selections were discussed for quantitative analysis of unsaturated soil slope stability. Moreover, a critical point was found at the effective angle of friction equaling to 16.5° by transformation of parameters related to unsaturated soil under sustained rainfall. When the effective angle of friction more than 16.5° through parameter transformation of different yield criteria under natural condition, the calculation result of the safety factor was such that: f(DP1) > f(M-C) > f(equivalent M-C) > f(DP2) > f(DP3). While the effective angle of friction less than 16.5°, through parameter transformation, the safety factors were in the following order: f(DP1) > f(M-C) > f(DP2) > f(equivalent M-C) > f(DP3). The calculated results from a case study showed that the equivalent M-C yield criterion should be the best at evaluating soil slope stability before rainfall; the DP2 yield criterion should be selected to calculate the soil slope stability at the effective angle of friction less than 16.5° under sustained rainfall. The yield criterion should be selected or adjusted reasonably to calculate the safety factor of unsaturated soil slopes before and during sustained rainfall. 展开更多
关键词 非饱和土边坡 定性定量分析 屈服准则 边坡稳定性评价 降雨入渗 计算结果 土壤材料 参数变换
原文传递
Critical embedment depth of a rigid retaining wall against overturning in unsaturated soils considering intermediate principal stress and strength nonlinearity 被引量:4
20
作者 张常光 陈新栋 范文 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第4期944-954,共11页
The overturning stability is vital for the retaining wall design of foundation pits, where the surrounding soils are usually unsaturated due to water draining. Moreover, the intermediate principal stress does affect t... The overturning stability is vital for the retaining wall design of foundation pits, where the surrounding soils are usually unsaturated due to water draining. Moreover, the intermediate principal stress does affect the unsaturated soil strength; meanwhile, the relationship between the unsaturated soil strength and matric suction is nonlinear. This work is to present closed-form equations of critical embedment depth for a rigid retaining wall against overturning by means of moment equilibrium. Matric suction is considered to be distributed uniformly and linearly with depth. The unified shear strength formulation for unsaturated soils under the plane strain condition is adopted to characterize the intermediate principal stress effect, and strength nonlinearity is described by a hyperbolic model of suction angle. The result obtained is orderly series solutions rather than one specific answer; thus, it has wide theoretical significance and good applicability. The validity of this present work is demonstrated by comparing it with a lower bound solution. The traditional overturning designs for rigid retaining walls, in which the saturated soil mechanics neglecting matric suction or the unsaturated soil mechanics based on the Mohr-Coulomb criterion are employed, are special cases of the proposed result. Parametric studies about the intermediate principal stress, matric suction and its distributions along with two strength nonlinearity methods on a new defined critical buried coefficient are discussed. 展开更多
关键词 非饱和土力学 刚性挡土墙 非线性关系 临界埋深 土强度 抗倾覆 MOHR-COULOMB准则 应力和
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部