This manuscript is an attempt to demonstrate effectiveness of nature-based solutions (NBS) and measures to reduce risk of flooding and environmental impact in urban settings. The nature-based solutions (NBS) were asse...This manuscript is an attempt to demonstrate effectiveness of nature-based solutions (NBS) and measures to reduce risk of flooding and environmental impact in urban settings. The nature-based solutions (NBS) were assessed as scenarios from experience of urban storm drainage and sewerage systems based on practices that improve urban water management through modelling using urban stormwater management model (SWMM). The model has been applied in a typical urban environment in the second city in Botswana, the City of Francistown, which has a population of more than one hundred thousand. By considering the 2-yr and 10-year storm events in a calibrated SWMM, NBS scenarios from a mix of low impact and drainage measures were considered. The considered NBS scenarios were used to determine their effectiveness in terms of reducing and controlling peak runoff, flood volumes, infiltration and evapotranspiration in the study area, which are vital in assessing the opportunity and challenge for sustainable management of water resources and associated tradeoff of investments in the urban contexts. The study demonstrates the usefulness of implementing effective measures for achieving NBS in urban context and possibility of outscaling at basin and regional levels.展开更多
The paper aimed to provide a review of different tools that estimate how human behavior changes by water management strategies and quantify this change to support the decisions of urban water managers</span><...The paper aimed to provide a review of different tools that estimate how human behavior changes by water management strategies and quantify this change to support the decisions of urban water managers</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">. To support decision makers, it is essential to be able to model the urban water system’s human part explicitly and link it to the hydro system’s response, rather than only explore the reaction of the system based on scenarios. To do so, tools are needed that can model the human part of the system, explore its reaction to potential changes and dynamically link back this to the techno-environmental model of the water system. This work reviews state-of-the-art ABMs that are publicly available focusing on the human part of the urban water system in Europe. The review leads to the proposals of three pillars for future development of ABMs for urban water management in Europe: end-user enablement;Machine Learning and Artificial Intelligence integration and adversaries modelling.展开更多
There are many pressures on urban water systems in today's highly dynamic world. These include the diverse impacts that are summarized under the term "Global Change". At the same time, high demands on water utiliti...There are many pressures on urban water systems in today's highly dynamic world. These include the diverse impacts that are summarized under the term "Global Change". At the same time, high demands on water utilities to act sustainably do exist. For this purpose, the collaborative project "Sustainability Controlling for Urban Water Systems" (NaCoSi) introduces an innovative approach with which sustainability risks can be identified and controlled. The sustainability controlling is based on common process-oriented management systems. The starting point is a system of sustainability objectives, which were developed together with practice partners from the German water sector. A method for multidimensional risk identification is introduced to identify sustainability risks. Complex networks of cause-effect relationships are disaggregated into unbranched linear causal chains, which are managed as records in a risk database. The subsequent analysis of the risk database allows the examination of cross-linked risks. Severe risk factors, vulnerable processes and sustainability objectives can thereby be identified and subsequently analyzed. The sustainability controlling was successfully tested and improved by an iterative process of case studies in cooperation with practice partners. The results of the case studies demonstrate the benefit of the project's interdisciplinary approach and the applicability of the sustainability controlling.展开更多
In the last decades, there is a lot of discussion in many scientific fields, about the high importance of water as a basic element for the existence and the maintenance of life, aiming to the right and proper usage of...In the last decades, there is a lot of discussion in many scientific fields, about the high importance of water as a basic element for the existence and the maintenance of life, aiming to the right and proper usage of water in our everyday basic water-needs due to its limited resources and the growing demand. This research deals with simple ways and technological systems applicable in urban residential buildings for the better management of domestic fresh water, as far as its maintenance and sustainability. Main aim of the survey is the effective minimization of urban daily water usage. All measurements of water quantities have estimated in the imperial gallon (1 gallon = 4.546 liter), and in liter (1 liter = 0.2 gallon).展开更多
Within the last decade, substantial progress has been achieved in the management of centralized water reticulation in Zambia. Characterized by diversified fiscal resourcing, concurrent institutional restructuring and ...Within the last decade, substantial progress has been achieved in the management of centralized water reticulation in Zambia. Characterized by diversified fiscal resourcing, concurrent institutional restructuring and introduction of new players in water governance, the water sector is set to achieve improved reliability on sustainable grounds. However, the threat of underground water pollution resulting from increased urbanization besides the unreliable energy sector presents new challenges for the current urban water. In effect, urban areas are affected by chronic water rationing creating public stress and insecurity which impacts domestic development. While the course of development has meant investment in the extension and expansion of water infrastructure in Zambia, alternative urban water resources are being sought to address challenges of traditional water systems globally. This paper therefore attempts to make a case for the modernization of Rooftop Rainwater Harvesting (RRWH) as an augmenting water resource in the Zambian urban housing sector. Here—in, it is identified as a Low Impact Development technology within the Integrated Urban Water Management framework currently being forged by local water. Based on a desktop literature survey and online questionnaire survey, an argument to support the development of RRWH in Zambia was developed. While literature survey results revealed evidence of economic loss and a growing compromise to public health resulting from inconsistent water supply in the study area of Lusaka city, the online questionnaire survey depicted significant domestic stress due to erratic water supply. Results confirmed that at one time residents observed an average of eight hours of power blackouts which effectively induced water disruption forcing homeowners to engage in various water storage methods which in turn are costly on domestic time, health and finances. A retrospective discussion based on both survey results attempts to present benefits and opportunities of urban RRWH to water sector stakeholders providing recommendations towards the mainstreaming of the practice in Zambia.展开更多
Integrated urban water management (IUWM) is a useful tool that can be used to alleviate water resource shortages in developing regions like Macao, where 98% of the raw water comes from China's Mainland. In Macao...Integrated urban water management (IUWM) is a useful tool that can be used to alleviate water resource shortages in developing regions like Macao, where 98% of the raw water comes from China's Mainland. In Macao, scarce water resources deteriorate rapidly in emergency situations, such as accidental chemical spills upstream of the supply reservoir or salty tides. During these times, only the water from the two freshwater reservoirs in Macao can be used. In this study, we developed urban water management optimization models that integrated the raw water supply from the two reservoirs with various proposed governmental policies (wastewater reuse, rainwater collection, and water saving). We then determined how various water resource strategies would influence the urban water supply in Macao in emergency situations. Our results showed that, without imported raw water, the water supply from only the two Macao reservoirs would last for 7.95 days. However, when all the government policies were included in the model, the supply could be extended to 13.79 days. Out of the three non-conventional water resources, wastewater reuse is the most beneficial for increasing the Macao water supply, and rainwater collection also has great potential.展开更多
Stormwater runoff has been identified as a source of pollution for the environment, especially for receiving waters. In order to quantify and manage the impacts of stormwater runoff on the environment, predictive mode...Stormwater runoff has been identified as a source of pollution for the environment, especially for receiving waters. In order to quantify and manage the impacts of stormwater runoff on the environment, predictive models and mathematical models have been developed. Predictive tools such as regression models have been widely used to predict stormwater discharge characteristics. Storm event characteristics, such as antecedent dry days (ADD), have been related to response variables, such as pollutant loads and concentrations. However it has been a controversial issue among many studies to consider ADD as an important variable in predicting stormwater discharge characteristics. In this study, we examined the accuracy of general linear regression models in predicting discharge characteristics of roadway runoff. A total of 17 storm events were monitored in two highway segments, located in Gwangju, Korea. Data from the monitoring were used to calibrate United States Environmental Protection Agency's Storm Water Management Model (SWMM). The calibrated SWMM was simulated for 55 storm events, and the results of total suspended solid (TSS) discharge loads and event mean concentrations (EMC) were extracted. From these data, linear regression models were developed. R2 and p-values of the regression of ADD for both TSS loads and EMCs were investigated. Results showed that pollutant loads were better predicted than pollutant EMC in the multiple regression models. Regression may not provide the true effect of site-specific characteristics, due to uncertainty in the data.展开更多
The growing water stress both in terms of water scarcity and quality deterioration promotes the development of reclaimed water as a new water resource use. This paper reviewed wastewater reuse practices in China, and ...The growing water stress both in terms of water scarcity and quality deterioration promotes the development of reclaimed water as a new water resource use. This paper reviewed wastewater reuse practices in China, and the opportunities and challenges of expanding reclaimed water use were analyzed. Rapid urbanization with the increasing of water demand and wastewater discharge provides an opportunity for wastewater reuse. The vast amount of wastewater discharge and low reclaimed water production mean that wastewater reuse still has a great potential in China. Many environmental and economic benefits and successful reclamation technologies also provide opportunities for wastewater reuse. In addition, the overall strategy in China is also encouraging for wastewater reuse. In the beginning stage of wastewater reclamation and reuse, there are many significant challenges to expand wastewater reuse in China including slow pace in adopting urban wastewater reuse programs, the establishment of integrated water resources management framework and guidelines for wastewater reuse programs, incoherent water quality requirements, the limited commercial development of reclaimed water and the strengthening of public awareness and cooperation among stakeholders.展开更多
文摘This manuscript is an attempt to demonstrate effectiveness of nature-based solutions (NBS) and measures to reduce risk of flooding and environmental impact in urban settings. The nature-based solutions (NBS) were assessed as scenarios from experience of urban storm drainage and sewerage systems based on practices that improve urban water management through modelling using urban stormwater management model (SWMM). The model has been applied in a typical urban environment in the second city in Botswana, the City of Francistown, which has a population of more than one hundred thousand. By considering the 2-yr and 10-year storm events in a calibrated SWMM, NBS scenarios from a mix of low impact and drainage measures were considered. The considered NBS scenarios were used to determine their effectiveness in terms of reducing and controlling peak runoff, flood volumes, infiltration and evapotranspiration in the study area, which are vital in assessing the opportunity and challenge for sustainable management of water resources and associated tradeoff of investments in the urban contexts. The study demonstrates the usefulness of implementing effective measures for achieving NBS in urban context and possibility of outscaling at basin and regional levels.
文摘The paper aimed to provide a review of different tools that estimate how human behavior changes by water management strategies and quantify this change to support the decisions of urban water managers</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">. To support decision makers, it is essential to be able to model the urban water system’s human part explicitly and link it to the hydro system’s response, rather than only explore the reaction of the system based on scenarios. To do so, tools are needed that can model the human part of the system, explore its reaction to potential changes and dynamically link back this to the techno-environmental model of the water system. This work reviews state-of-the-art ABMs that are publicly available focusing on the human part of the urban water system in Europe. The review leads to the proposals of three pillars for future development of ABMs for urban water management in Europe: end-user enablement;Machine Learning and Artificial Intelligence integration and adversaries modelling.
文摘There are many pressures on urban water systems in today's highly dynamic world. These include the diverse impacts that are summarized under the term "Global Change". At the same time, high demands on water utilities to act sustainably do exist. For this purpose, the collaborative project "Sustainability Controlling for Urban Water Systems" (NaCoSi) introduces an innovative approach with which sustainability risks can be identified and controlled. The sustainability controlling is based on common process-oriented management systems. The starting point is a system of sustainability objectives, which were developed together with practice partners from the German water sector. A method for multidimensional risk identification is introduced to identify sustainability risks. Complex networks of cause-effect relationships are disaggregated into unbranched linear causal chains, which are managed as records in a risk database. The subsequent analysis of the risk database allows the examination of cross-linked risks. Severe risk factors, vulnerable processes and sustainability objectives can thereby be identified and subsequently analyzed. The sustainability controlling was successfully tested and improved by an iterative process of case studies in cooperation with practice partners. The results of the case studies demonstrate the benefit of the project's interdisciplinary approach and the applicability of the sustainability controlling.
文摘In the last decades, there is a lot of discussion in many scientific fields, about the high importance of water as a basic element for the existence and the maintenance of life, aiming to the right and proper usage of water in our everyday basic water-needs due to its limited resources and the growing demand. This research deals with simple ways and technological systems applicable in urban residential buildings for the better management of domestic fresh water, as far as its maintenance and sustainability. Main aim of the survey is the effective minimization of urban daily water usage. All measurements of water quantities have estimated in the imperial gallon (1 gallon = 4.546 liter), and in liter (1 liter = 0.2 gallon).
文摘Within the last decade, substantial progress has been achieved in the management of centralized water reticulation in Zambia. Characterized by diversified fiscal resourcing, concurrent institutional restructuring and introduction of new players in water governance, the water sector is set to achieve improved reliability on sustainable grounds. However, the threat of underground water pollution resulting from increased urbanization besides the unreliable energy sector presents new challenges for the current urban water. In effect, urban areas are affected by chronic water rationing creating public stress and insecurity which impacts domestic development. While the course of development has meant investment in the extension and expansion of water infrastructure in Zambia, alternative urban water resources are being sought to address challenges of traditional water systems globally. This paper therefore attempts to make a case for the modernization of Rooftop Rainwater Harvesting (RRWH) as an augmenting water resource in the Zambian urban housing sector. Here—in, it is identified as a Low Impact Development technology within the Integrated Urban Water Management framework currently being forged by local water. Based on a desktop literature survey and online questionnaire survey, an argument to support the development of RRWH in Zambia was developed. While literature survey results revealed evidence of economic loss and a growing compromise to public health resulting from inconsistent water supply in the study area of Lusaka city, the online questionnaire survey depicted significant domestic stress due to erratic water supply. Results confirmed that at one time residents observed an average of eight hours of power blackouts which effectively induced water disruption forcing homeowners to engage in various water storage methods which in turn are costly on domestic time, health and finances. A retrospective discussion based on both survey results attempts to present benefits and opportunities of urban RRWH to water sector stakeholders providing recommendations towards the mainstreaming of the practice in Zambia.
基金supported by the Fundo para lo Desenvolvimento das Ciências e da Tecnologia (FDCT), under Grant No. FDCT/069/2014/A2the Research Committee of the University of Macao, under Grant No MYRG072(Y1-L2)-FST13-LIC
文摘Integrated urban water management (IUWM) is a useful tool that can be used to alleviate water resource shortages in developing regions like Macao, where 98% of the raw water comes from China's Mainland. In Macao, scarce water resources deteriorate rapidly in emergency situations, such as accidental chemical spills upstream of the supply reservoir or salty tides. During these times, only the water from the two freshwater reservoirs in Macao can be used. In this study, we developed urban water management optimization models that integrated the raw water supply from the two reservoirs with various proposed governmental policies (wastewater reuse, rainwater collection, and water saving). We then determined how various water resource strategies would influence the urban water supply in Macao in emergency situations. Our results showed that, without imported raw water, the water supply from only the two Macao reservoirs would last for 7.95 days. However, when all the government policies were included in the model, the supply could be extended to 13.79 days. Out of the three non-conventional water resources, wastewater reuse is the most beneficial for increasing the Macao water supply, and rainwater collection also has great potential.
基金supported by the Korea Ministry of Environment, as "The Eco-innovation Project" (No. 413111-003)
文摘Stormwater runoff has been identified as a source of pollution for the environment, especially for receiving waters. In order to quantify and manage the impacts of stormwater runoff on the environment, predictive models and mathematical models have been developed. Predictive tools such as regression models have been widely used to predict stormwater discharge characteristics. Storm event characteristics, such as antecedent dry days (ADD), have been related to response variables, such as pollutant loads and concentrations. However it has been a controversial issue among many studies to consider ADD as an important variable in predicting stormwater discharge characteristics. In this study, we examined the accuracy of general linear regression models in predicting discharge characteristics of roadway runoff. A total of 17 storm events were monitored in two highway segments, located in Gwangju, Korea. Data from the monitoring were used to calibrate United States Environmental Protection Agency's Storm Water Management Model (SWMM). The calibrated SWMM was simulated for 55 storm events, and the results of total suspended solid (TSS) discharge loads and event mean concentrations (EMC) were extracted. From these data, linear regression models were developed. R2 and p-values of the regression of ADD for both TSS loads and EMCs were investigated. Results showed that pollutant loads were better predicted than pollutant EMC in the multiple regression models. Regression may not provide the true effect of site-specific characteristics, due to uncertainty in the data.
基金supported by the National Natural Science Foundation of China(No.41271501)
文摘The growing water stress both in terms of water scarcity and quality deterioration promotes the development of reclaimed water as a new water resource use. This paper reviewed wastewater reuse practices in China, and the opportunities and challenges of expanding reclaimed water use were analyzed. Rapid urbanization with the increasing of water demand and wastewater discharge provides an opportunity for wastewater reuse. The vast amount of wastewater discharge and low reclaimed water production mean that wastewater reuse still has a great potential in China. Many environmental and economic benefits and successful reclamation technologies also provide opportunities for wastewater reuse. In addition, the overall strategy in China is also encouraging for wastewater reuse. In the beginning stage of wastewater reclamation and reuse, there are many significant challenges to expand wastewater reuse in China including slow pace in adopting urban wastewater reuse programs, the establishment of integrated water resources management framework and guidelines for wastewater reuse programs, incoherent water quality requirements, the limited commercial development of reclaimed water and the strengthening of public awareness and cooperation among stakeholders.