The development of aqueous zinc ion battery cathode materials with high capacity and high magnification is still a challenge.Herein,porous vanadium oxide/carbon(p-VO_(x)@C,mainly VO_(2) with a small amount of V_(2)O_(...The development of aqueous zinc ion battery cathode materials with high capacity and high magnification is still a challenge.Herein,porous vanadium oxide/carbon(p-VO_(x)@C,mainly VO_(2) with a small amount of V_(2)O_(3)) core/shell microspheres with oxygen vacancies are facilely fabricated by using a vanadium-based metal-organic framework(MIL-100(V)) as a sacrificial template.This unique structure can improve the conductivity of the VO_(x),accelerate electrolyte diffusion,and suppress structural collapse during circulation.Subsequently,H_(2)O molecules are introduced into the interlayer of VO_(x) through a highly efficient in-situ electrochemical activation process,facilitating the intercalation and diffusion of zinc ions.After the activation,an optimal sample exhibits a high specific capacity of 464.3 mA h g^(-1) at0.2 A g^(-1) and 395.2 mA h g^(-1) at 10 A g^(-1),indicating excellent rate performance.Moreover,the optimal sample maintains a capacity retention of about 89.3% after 2500 cycles at 10 A g^(-1).Density functional theory calculation demonstrates that the presence of oxygen vacancies and intercalated water molecules can significantly reduce the diffusion barrier for zinc ions.In addition,it is proved that the storage of zinc ions in the cathode is achieved by reversible intercalation/extraction during the charge and discharge process through various ex-situ analysis technologies.This work demonstrates that the p-VO_(x)@C has great potential for applications in aqueous ZIBs after electrochemical activation.展开更多
Aqueous Zn-ion batteries(AZIBs)are recognized as a promising energy storage system with intrinsic safety and low cost,but its applications still rely on the design of high-capacity and stable-cycling cathode materials...Aqueous Zn-ion batteries(AZIBs)are recognized as a promising energy storage system with intrinsic safety and low cost,but its applications still rely on the design of high-capacity and stable-cycling cathode materials.In this work,we present an intercalation mechanism-based cathode materials for AZIB,i.e.the vanadium oxide with pre-intercalated manganese ions and lattice water(noted as MVOH).The synergistic effect between Mn^(2+)and lattice H_(2)O not only expands the interlayer spacing,but also significantly enhances the structural stability.Systematic in-situ and ex-situ characterizations clarify the Zn^(2+)/H^(+)co–(de)intercalation mechanism of MVOH in aqueous electrolyte.The demonstrated remarkable structure stability,excellent kinetic behaviors and ion-storage mechanism together enable the MVOH to demonstrate satisfactory specific capacity of 450 mA h g^(−1)at 0.2 A g^(−1),excellent rate performance of 288.8 mA h g^(−1)at 10 A g^(−1)and long cycle life over 20,000 cycles at 5 A g^(−1).This work provides a practical cathode material,and contributes to the understanding of the ion-intercalation mechanism and structural evolution of the vanadium-based cathode for AZIBs.展开更多
The scarcity of wettability,insufficient active sites,and low surface area of graphite felt(GF)have long been suppressing the performance of vanadium redox flow batteries(VRFBs).Herein,an ultra-homogeneous multipledim...The scarcity of wettability,insufficient active sites,and low surface area of graphite felt(GF)have long been suppressing the performance of vanadium redox flow batteries(VRFBs).Herein,an ultra-homogeneous multipledimensioned defect,including nano-scale etching and atomic-scale N,O codoping,was used to modify GF by the molten salt system.NH_(4)Cl and KClO_(3) were added simultaneously to the system to obtain porous N/O co-doped electrode(GF/ON),where KClO_(3) was used to ultra-homogeneously etch,and O-functionalize electrode,and NH4Cl was used as N dopant,respectively.GF/ON presents better electrochemical catalysis for VO_(2)+/VO_(2)+ and V3+/V2+ reactions than only O-functionalized electrodes(GF/O)and GF.The enhanced electrochemical properties are attributed to an increase in active sites,surface area,and wettability,as well as the synergistic effect of N and O,which is also supported by the density functional theory calculations.Further,the cell using GF/ON shows higher discharge capacity,energy efficiency,and stability for cycling performance than the pristine cell at 140 mA cm^(−2) for 200 cycles.Moreover,the energy efficiency of the modified cell is increased by 9.7% from 55.2% for the pristine cell at 260 mA cm^(−2).Such an ultra-homogeneous etching with N and O co-doping through“boiling”molten salt medium provides an effective and practical application potential way to prepare superior electrodes for VRFB.展开更多
Vanadium and its derivatives are used in various industries,including steel,metallurgy,pharmaceuticals,and aerospace engineering.Although China has massive reserves of stone coal resources,these resources have low gra...Vanadium and its derivatives are used in various industries,including steel,metallurgy,pharmaceuticals,and aerospace engineering.Although China has massive reserves of stone coal resources,these resources have low grades.Therefore,the effective extraction and recovery of metallic vanadium from stone coal is an important way to realize the efficient resource utilization of stone coal vanadium ore.Herein,Bacillus mucilaginosus was selected as the leaching strain.The vanadium leaching rate reached 35.5%after 20 d of bioleaching under optimal operating conditions.The cumulative vanadium leaching rate in the contact group reached 35.5%,which was higher than that in the noncontact group(9.3%).The metabolites of B.mucilaginosus,such as oxalic,tartaric,citric,and malic acids,dominated in bioleaching,accounting for 73.8%of the vanadium leaching rate.Interestingly,during leaching,the presence of stone coal stimulated the expression of carbonic anhydrase in bacterial cells,and enzyme activity increased by 1.335-1.905 U.Enzyme activity positively promoted the production of metabolite organic acids,and total organic acid content increased by 39.31 mg·L^(-1),resulting in a reduction of 2.51 in the pH of the leaching system with stone coal.This effect favored the leaching of vanadium from stone coal.Atomic force microscopy illustrated that bacterial leaching exacerbated corrosion on the surface of stone coal beyond 10 nm.Our study provides a clear and promising strategy for exploring the bioleaching mechanism from the perspective of microbial enzyme activity and metabolites.展开更多
Synergistic regulation of hierarchical nanostructures and defect engineering is effective in accelerating electron and ion transport for metal oxide electrodes.Herein,carbon nanofiber-supported V_(2)O_(3) with enriche...Synergistic regulation of hierarchical nanostructures and defect engineering is effective in accelerating electron and ion transport for metal oxide electrodes.Herein,carbon nanofiber-supported V_(2)O_(3) with enriched oxygen vacancies(OV-V_(2)O_(3)@CNF)was fabricated using the facile electrospinning method,followed by thermal reduction.Differing from the traditional particles embedded within carbon nanofibers or irregularly distributed between carbon nanofibers,the free-standing OV-V_(2)O_(3)@CNF allows for V_(2)O_(3) nanosheets to grow vertically on one-dimensional(1D)carbon nanofibers,enabling abundant active sites,shortened ion diffusion pathway,continuous electron transport,and robust structural stability.Meanwhile,density functional theory calculations confirmed that the oxygen vacancies can promote intrinsic electron conductivity and reduce ion diffusion energy barrier.Consequently,the OV-V_(2)O_(3)@CNF anode delivers a large reversible capacity of 812 mAh g^(-1) at 0.1 A g^(-1),superior rate capability(405 mAh g^(-1) at 5 A g^(-1)),and long cycle life(378 mAh g^(-1) at 5 A g^(-1) after 1000 cycles).Moreover,an all-vanadium full battery(V2O5//OV-V_(2)O_(3)@CNF)was assembled using an OV-V_(2)O_(3)@CNF anode and a V2O5 cathode,which outputs a working voltage of 2.5 V with high energy density and power density,suggesting promising practical application.This work offers fresh perspectives on constructing hierarchical 1D nanofiber electrodes by combining defect engineering and electrospinning technology.展开更多
Vanadium-based electrodes are regarded as attractive cathode materials in aqueous zinc ion batteries(ZIBs)caused by their high capacity and unique layered structure.However,it is extremely challenging to acquire high ...Vanadium-based electrodes are regarded as attractive cathode materials in aqueous zinc ion batteries(ZIBs)caused by their high capacity and unique layered structure.However,it is extremely challenging to acquire high electrochemical performance owing to the limited electronic conductivity,sluggish ion kinetics,and severe volume expansion during the insertion/extraction process of Zn^(2+).Herein,a series of V_(2)O_(3)nanospheres embedded N-doped carbon nanofiber structures with various V_(2)O_(3)spherical morphologies(solid,core-shell,hollow)have been designed for the first time by an electrospinning technique followed thermal treatments.The N-doped carbon nanofibers not only improve the electrical conductivity and the structural stability,but also provides encapsulating shells to prevent the vanadium dissolution and aggregation of V_(2)O_(3)particles.Furthermore,the varied morphological structures of V_(2)O_(3)with abundant oxygen vacancies can alleviate the volume change and increase the Zn^(2+)pathway.Besides,the phase transition between V_(2)O_(3)and Zn_XV_(2)O_(5-m)·n H_(2)O in the cycling was also certified.As a result,the as-obtained composite delivers excellent long-term cycle stability and enhanced rate performance for coin cells,which is also confirmed through density functional theory(DFT)calculations.Even assembled into flexible ZIBs,the sample still exhibits superior electrochemical performance,which may afford new design concept for flexible cathode materials of ZIBs.展开更多
Sodium-based storage devices based on conversion-type metal sulfide anodes have attracted great atten-tion due to their multivalent ion redox reaction ability.However,they also suffer from sodium polysul-fides(NaPSs)s...Sodium-based storage devices based on conversion-type metal sulfide anodes have attracted great atten-tion due to their multivalent ion redox reaction ability.However,they also suffer from sodium polysul-fides(NaPSs)shuttling problems during the sluggish Na^(+) redox process,leading to"voltage failure"and rapid capacity decay.Herein,a metal cobalt-doping vanadium disulfide(Co-VS_(2))is proposed to simulta-neously accelerate the electrochemical reaction of VS_(2) and enhance the bidirectional redox of soluble NaPSs.It is found that the strong adsorption of NaPSs by V-Co alloy nanoparticles formed in situ during the conversion reaction of Co-VS_(2) can effectively inhibit the dissolution and shuttle of NaPSs,and ther-modynamically reduce the formation energy barrier of the reaction path to effectively drive the complete conversion reaction,while the metal transition of Co elements enhances reconversion kinetics to achieve high reversibility.Moreover,Co-VS_(2) also produce abundant sulfur vacancies and unsaturated sulfur edge defects,significantly improve ionic/electron diffusion kinetics.Therefore,the Co-VS_(2) anode exhibits ultrahigh rate capability(562 mA h g^(-1) at 5 A g^(-1)),high initial coulombic efficiency(~90%)and 12,000 ultralong cycle life with capacity retention of 90%in sodium-ion batteries(SIBs),as well as impressive energy/power density(118 Wh kg^(-1)/31,250 W kg^(-1))and over 10.000 stable cycles in sodium-ion hybrid capacitors(SIHCs).Moreover,the pouch cell-type SIHC displays a high-energy density of 102 Wh kg^(-1) and exceed 600 stable cycles.This work deepens the understanding of the electrochemical reaction mechanism of conversion-type metal sulfide anodes and provides a valuable solution to the shuttlingofNaPSs inSIBsandSIHCs.展开更多
Exploring suitable high-capacity V_(2)O_(5)-based cathode materials is essential for the rapid advancement of aqueous zinc ion batteries(ZIBs).However,the typical problem of slow Zn^(2+)diffusion kinetics has severely...Exploring suitable high-capacity V_(2)O_(5)-based cathode materials is essential for the rapid advancement of aqueous zinc ion batteries(ZIBs).However,the typical problem of slow Zn^(2+)diffusion kinetics has severely limited the feasibility of such materials.In this work,unique hydrated vanadates(CaVO,BaVO)were obtained by intercalation of Ca^(2+)or Ba^(2+)into hydrated vanadium pentoxide.In the CaVO//Zn and BaVO//Zn batteries systems,the former delivered up to a 489.8 mAh g^(-1)discharge specific capacity at 0.1 A g^(-1).Moreover,the remarkable energy density of 370.07 Wh kg^(-1)and favorable cycling stability yard outperform BaVO,pure V_(2)O_(5),and many reported cathodes of similar ionic intercalation compounds.In addition,pseudocapacitance analysis,galvanostatic intermittent titration(GITT)tests,and Trasatti analysis revealed the high capacitance contribution and Zn^(2+)diffusion coefficient of CaVO,while an in-depth investigation based on EIS elucidated the reasons for the better electrochemical performance of CaVO.Notably,ex-situ XRD,XPS,and TEM tests further demonstrated the Zn^(2+)insertion/extraction and Zn-storage mechanism that occurred during the cycle in the CaVO//Zn battery system.This work provides new insights into the intercalation of similar divalent cations in vanadium oxides and offers new solutions for designing cathodes for high-capacity aqueous ZIBs.展开更多
The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble fo...The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble formation is crucial.This benchmarking study locally analyzes the bubble distribution in thick,porous electrodes for the first time using deep learning-based image segmentation of synchrotron X-ray micro-tomograms.Each large three-dimensional data set was processed precisely in less than one minute while minimizing human errors and pointing out areas of increased HER activity in VRFBs.The study systematically varies the electrode potential and material,concluding that more negative electrode potentials of-200 m V vs.reversible hydrogen electrode(RHE)and lower cause more substantial bubble formation,resulting in bubble fractions of around 15%–20%in carbon felt electrodes.Contrarily,the bubble fractions stay only around 2%in an electrode combining carbon felt and carbon paper.The detected areas with high HER activity,such as the border subregion with more than 30%bubble fraction in carbon felt electrodes,the cutting edges,and preferential spots in the electrode bulk,are potential-independent and suggest that larger electrodes with a higher bulk-to-border ratio might reduce HER-related performance losses.The described combination of electrochemical measurements,local X-ray microtomography,AI-based segmentation,and 3D morphometric analysis is a powerful and novel approach for local bubble analysis in three-dimensional porous electrodes,providing an essential toolkit for a broad community working on bubble-generating electrochemical systems.展开更多
Vanadium oxides,par-ticularly hydrated forms like V_(2)O_(5)·nH_(2)O(VOH),stand out as promising cathode candidates for aqueous zinc ion batteries due to their adjustable layered structure,unique electronic chara...Vanadium oxides,par-ticularly hydrated forms like V_(2)O_(5)·nH_(2)O(VOH),stand out as promising cathode candidates for aqueous zinc ion batteries due to their adjustable layered structure,unique electronic characteristics,and high theoretical capacities.However,challenges such as vanadium dissolution,sluggish Zn^(2+)diffusion kinetics,and low operating voltage still hinder their direct application.In this study,we present a novel vanadium oxide([C_(6)H_(6)N(CH_(3))_(3)]_(1.08)V_(8)O_(20)·0.06H_(2)O,TMPA-VOH),developed by pre-inserting trimethylphenylammonium(TMPA+)cations into VOH.The incorporation of weakly polarized organic cations capitalizes on both ionic pre-intercalation and molecular pre-intercalation effects,resulting in a phase and morphology transition,an expansion of the interlayer distance,extrusion of weakly bonded interlayer water,and a substantial increase in V^(4+)content.These modifications synergistically reduce the electrostatic interactions between Zn^(2+)and the V-O lattice,enhancing structural stability and reaction kinetics during cycling.As a result,TMPA-VOH achieves an elevated open circuit voltage and operation voltage,exhibits a large specific capacity(451 mAh g^(-1)at 0.1 A g^(-1))coupled with high energy efficiency(89%),the significantly-reduced battery polarization,and outstanding rate capability and cycling stability.The concept introduced in this study holds great promise for the development of high-performance oxide-based energy storage materials.展开更多
Hard carbons are promising anode materials for sodium-ion batteries.To meet practical requirements,searching for durable and conductive carbon with a stable interface is of great importance.Here,we prepare a series of...Hard carbons are promising anode materials for sodium-ion batteries.To meet practical requirements,searching for durable and conductive carbon with a stable interface is of great importance.Here,we prepare a series of vanadiummodified hard carbon submicrospheres by using hydrothermal carbonization followed by high-temperature pyrolysis.Significantly,the introduction of vanadium can facilitate the nucleation and uniform growth of carbon spheres and generate abundant V-O-C interface bonds,thus optimizing the reaction kinetic.Meanwhile,the optimized hard carbon spheres modified by vanadium carbide,with sufficient pseudographitic domains,provide more active sites for Na ion migration and storage.As a result,the HC/VC-1300 electrode exhibits excellent Na storage performance,including a high capacity of 420 mAh g^(-1) at 50mA g^(-1) and good rate capability at 1 A g^(-1).This study proposes a new strategy for the synthesis of hard carbon spheres with high tap density and emphasizes the key role of pseudographitic structure for Na storage and interface stabilization.展开更多
Potassium-ion batteries(PIBs)have been considered as promising candidates in the post-lithium-ion battery era.Till now,a large number of materials have been used as electrode materials for PIBs,among which vanadium ox...Potassium-ion batteries(PIBs)have been considered as promising candidates in the post-lithium-ion battery era.Till now,a large number of materials have been used as electrode materials for PIBs,among which vanadium oxides exhibit great potentiality.Vanadium oxides can provide multiple electron transfers during electrochemical reactions because vanadium possesses a variety of oxidation states.Meanwhile,their relatively low cost and superior material,structural,and physicochemical properties endow them with strong competitiveness.Although some inspiring research results have been achieved,many issues and challenges remain to be further addressed.Herein,we systematically summarize the research progress of vanadium oxides for PIBs.Then,feasible improvement strategies for the material properties and electrochemical performance are introduced.Finally,the existing challenges and perspectives are discussed with a view to promoting the development of vanadium oxides and accelerating their practical applications.展开更多
Microwave heating can rapidly and uniformly raise the temperature and accelerate the reaction rate.In this paper,microwave heating was used to improve the acid leaching,and the mechanism was investigated via microscop...Microwave heating can rapidly and uniformly raise the temperature and accelerate the reaction rate.In this paper,microwave heating was used to improve the acid leaching,and the mechanism was investigated via microscopic morphology analysis and numerical simulation by COMSOL Multiphysics software.The effects of the microwave power,leaching temperature,CaF_(2) dosage,H_(2)SO_(4) concentration,and leaching time on the vanadium recovery were investigated.A vanadium recovery of 80.66%is obtained at a microwave power of 550 W,leaching temperature of 95℃,CaF_(2) dosage of 5wt%,H_(2)SO_(4) concentration of 20vol%,and leaching time of 2.5 h.Compared with conventional leaching technology,the vanadium recovery increases by 6.18%,and the leaching time shortens by 79.17%.More obvious pulverization of shale particles and delamination of mica minerals happen in the microwave-assisted leaching process.Numerical simulation results show that the temperature of vanadium shales increases with an increase in electric field(E-field).The distributions of E-field and temperature among vanadium shale particles are relatively uniform,except for the higher content at the contact position of the particles.The analysis results of scaleup experiments and leaching experiments indicate high-temperature hot spots in the process of microwave-assisted leaching,and the local high temperature destroys the mineral structure and accelerates the reaction rate.展开更多
The practical application of magnesium hydride(MgH_(2))was seriously limited by its high desorption temperature and slow desorp-tion kinetics.In this study,a bullet-like catalyst based on vanadium related MOFs(MOFs-V)...The practical application of magnesium hydride(MgH_(2))was seriously limited by its high desorption temperature and slow desorp-tion kinetics.In this study,a bullet-like catalyst based on vanadium related MOFs(MOFs-V)was successfully synthesized and doped with MgH_(2) by ball milling to improve its hydrogen storage performance.Microstructure analysis demonstrated that the as-synthesized MOFs was consisted of V_(2)O_(3) with a bullet-like structure.After adding 7wt%MOFs-V,the initial desorption temperature of MgH_(2) was reduced from 340.0 to 190.6℃.Besides,the MgH_(2)+7wt%MOFs-V composite released 6.4wt%H_(2) within 5 min at 300℃.Hydrogen uptake was started at 60℃under 3200 kPa hydrogen pressure for the 7wt%MOFs-V containing sample.The desorption and absorption apparent activity energies of the MgH_(2)+7wt%MOFs-V composite were calculated to be(98.4±2.9)and(30.3±2.1)kJ·mol^(-1),much lower than(157.5±3.3)and(78.2±3.4)kJ·mol^(−1) for the as-prepared MgH_(2).The MgH_(2)+7wt%MOFs-V composite exhibited superior cyclic property.During the 20 cycles isothermal dehydrogenation and hydrogenation experiments,the hydrogen storage capacity stayed almost unchanged.X-ray diffraction(XRD)and X-ray photoelectron spectrometer(XPS)measurements confirmed the presence of metallic vanadium in the MgH_(2)+7wt%MOFs-V composite,which served as catalytic unit to markedly improve the hydrogen storage properties of Mg/MgH_(2) system.展开更多
Rechargeable aqueous zinc-ion batteries are promising candidate for gridscale energy storage.However,the development of zinc-ion batteries has been plagued by the lack of cathode materials with high specific capacity ...Rechargeable aqueous zinc-ion batteries are promising candidate for gridscale energy storage.However,the development of zinc-ion batteries has been plagued by the lack of cathode materials with high specific capacity and superior lifespan.Herein,hexagonal Cs_(0.3)V_(2)O_(5)cathode is fabricated and investigated in zinc-ion batteries.Compared with the traditional vanadium oxides,the introduction of Cs changes the periodic atomic arrangements,which not only stabilizes the open framework structure but also facilitates the Zn^(2+)diffusion with a lower migration energy barrier.Consequently,high specific capacity of 543.8 mA h g^(-1)at 0.1 A g^(-1)is achieved,which surpasses most of reported cathode materials in zinc-ion batteries.The excellent cycle life is achieved over 1000 cycles with about 87.8%capacity retention at 2 A g^(-1).Furthermore,the morphological evolution and energy storage mechanisms are also revealed via a series of techniques.This work opens up a phase engineering strategy to fabricate the hexagonal vanadium oxide and elucidate the application of phase-dependent cathodes in zinc-ion batteries.展开更多
The purpose of this study is to apply process mineralogy as a practical tool to further understand and analyze the reasons for low leaching rates in the curing-leaching process of vanadium-bearing stone coal and to fi...The purpose of this study is to apply process mineralogy as a practical tool to further understand and analyze the reasons for low leaching rates in the curing-leaching process of vanadium-bearing stone coal and to find a solution or improvement to optimize the leaching index.Using vanadium-bearing stone coal with the V2O5 mass fraction of 0.88%as the research object,the effects of particle size,mineral composition,and sulfuric acid curing on the feed,intermediate,and final products of curing-leaching were analyzed.The main vanadium-bearing minerals in the feed samples included sericite/illite,montmorillonite,kaolinite,limonite,and schreyerite.Through the penetration depth analysis of sulfuric acid,the reason for the high vanadium content in the coarse leaching residue(0.205%V2O5)was found,mainly due to the poor curing effect and incomplete washing after screening.Therefore,thorough washing after sieving and further optimizing the curing process are necessary.The vanadium content of the fine leaching residue(0.078%)was low and the curing-leaching effect was good.However,the vanadium content in the thickened residue(0.296%)exceeded that in the fine leaching residue,which was attributed to the neutralization reaction in the#1 thickener.To solve this problem,the neutralization and thickening processes should be performed in separate equipment.The analysis and detection of key products is helpful for identifying problems and improving the curing-leaching circuit process.展开更多
Niobium pentoxide(Nb_(2)O_(5))anodes have gained increasing attentions for high-power lithium-ion batteries owing to the outstanding rate capability and high safety.However,Nb2O5 anode suffers poor cycle stability eve...Niobium pentoxide(Nb_(2)O_(5))anodes have gained increasing attentions for high-power lithium-ion batteries owing to the outstanding rate capability and high safety.However,Nb2O5 anode suffers poor cycle stability even after modified and the unrevealed mechanisms have restricted the practical applications.Herein,the over-reduction of Nb5+has been demonstrated to be the critical reason for the capacity loss for the first time.Besides,an effective competitive redox strategy has been developed to solve the rapid capacity decay of Nb_(2)O_(5),which can be achieved by the incorporation of vanadium to form a new rutile VNbO_(4)anode.The highly reversible V^(3+)/V^(2+)redox couple in VNbO_(4)can effectively inhibit the over-reduction of Nb^(5+).Besides,the electron migration from V^(3+)to Nb5+can greatly increase the intrinsic electronic conductivity for VNbO4.As a result,VNbO4 anode delivers a high capacity of 206.1 mAh g^(−1)at 0.1 A g^(−1),as well as remarkable cycle performance with a retention of 93.4%after 2000 cycles at 1.0 A g^(−1).In addition,the assembled lithium-ion capacitor demonstrates a high energy density of 44 Wh kg^(−1)at 5.8 kW kg^(−1).In summary,our work provides a new insight into the design of ultra-fast and durable anodes.展开更多
Release of vanadium(V)from industry has threatened the environment and human health.In this paper,a removal method of vanadium(V)is proposed using a by-product of the yellow phosphorus industry(phosphorus-iron)as a re...Release of vanadium(V)from industry has threatened the environment and human health.In this paper,a removal method of vanadium(V)is proposed using a by-product of the yellow phosphorus industry(phosphorus-iron)as a reducing agent.The thermodynamics analysis shows that the Gibbs free energy is always negative from 0 to 100℃,indicating a spontaneous process.Effect of the phosphorus-iron slag/sulfuric acid dosage and temperature on the removal efficiency is comprehensively studied,and the kinetics parameters are calculated based on a quasi-first order reaction kinetics model.Results indicate that vanadium(V)can be entirely reduced by using phosphorus-iron slag,the frequency factor and apparent activation energy are 3.23×10^(9)min^(-1)and 64.50 kJ.mol^(-1) for vanadium(V)reduction.Based on above results,a lab-scale reactor is constructed and achieves a removal efficiency of~100%and a treatment capacity of 200 ml vanadium(V)solution(2 g.L^(-1))within 3 h.This work demonstrates the feasibility of vanadium(V)reduction using phosphorus-iron slag as a reducing agent in applications.展开更多
Aqueous zinc ion battery(ZIB)with many virtues such as high safety,cost-effective,and good environmental compatibility is a large-scale energy storage technology with great application potential.Nevertheless,its appli...Aqueous zinc ion battery(ZIB)with many virtues such as high safety,cost-effective,and good environmental compatibility is a large-scale energy storage technology with great application potential.Nevertheless,its application is severely hindered by the slow diffusion of zinc ions in desirable cathode materials.Herein,a technique of water-incorporation coupled with oxygen-vacancy modulation is exploited to improve the zinc ions diffusion kinetics in vanadium pentoxide(V_(2)O_5)cathode for ZIB.The incorporated water molecules replace lattice oxygen in V_(2)O_5,and function as pillars to expand interlayer distance.So the structural stability can be enhanced,and the zinc ions diffusion kinetics might also be promoted during the repeated intercalation/deintercalation.Meanwhile,the lattice water molecules can effectively enhance conductivity due to the electronic density modulation effect.Consequently,the modulated V_(2)O_5(H-V_(2)O_5)cathode behaves with superior rate capacity and stable durability,achieving 234 mA h g^(-1)over 9000 cycles even at 20 A g^(-1).Furthermore,a flexible all-solid-state(ASS)ZIB has been constructed,exhibiting an admirable energy density of 196.6 Wh kg^(-1)and impressive power density of 20.4 kW kg^(-1)as well as excellent long-term lifespan.Importantly,the assembled flexible ASS ZIB would be able to work in a large temperature span(from-20 to 70℃).Additionally,we also uncover the energy storage mechanism of the H-V_(2)O_5 electrode,offering a novel approach for creating high-kinetics cathodes for multivalent ion storage.展开更多
With the rise of aqueous multivalent rechargeable batteries,inorganic-organic hybrid cathodes have attracted more and more attention due to the complement of each other’s advantages.Herein,a strategy of designing hyb...With the rise of aqueous multivalent rechargeable batteries,inorganic-organic hybrid cathodes have attracted more and more attention due to the complement of each other’s advantages.Herein,a strategy of designing hybrid cathode is adopted for high efficient aqueous zinc-ion batteries(AZIBs).Methylene blue(MB)intercalated vanadium oxide(HVO-MB)was synthesized through sol-gel and ion exchange method.Compared with other organic-inorganic intercalation cathode,not only can the MB intercalation enlarge the HVO interlayer spacing to improve ion mobility,but also provide coordination reactions with the Zn^(2+)to enhance the intrinsic electrochemical reaction kinetics of the hybrid electrode.As a key component for the cathode of AZIBs,HVO-MB contributes a specific capacity of 418 mA h g^(-1) at 0.1 A g^(-1),high rate capability(243 mA h g^(-1) at 5 A g^(-1))and extraordinary stability(88%of capacity retention after 2000cycles at a high current density of 5 A g^(-1))in 3 M Zn(CF_(3)SO_(3))_(2) aqueous electrolyte.The electrochemical kinetics reveals HVO-MB characterized with large pseudocapacitance charge storage behavior due to the fast ion migration provided by the coordination reaction and expanded interlayer distance.Furthermore,a mixed energy storage mechanism involving Zn^(2+)insertion and coordination reaction is confirmed by various ex-situ characterization.Thus,this work opens up a new path for constructing the high performance cathode of AZIBs through organic-inorganic hybridization.展开更多
基金supported by the National Natural Science Foundation of China(Nos.92163118,51972234)。
文摘The development of aqueous zinc ion battery cathode materials with high capacity and high magnification is still a challenge.Herein,porous vanadium oxide/carbon(p-VO_(x)@C,mainly VO_(2) with a small amount of V_(2)O_(3)) core/shell microspheres with oxygen vacancies are facilely fabricated by using a vanadium-based metal-organic framework(MIL-100(V)) as a sacrificial template.This unique structure can improve the conductivity of the VO_(x),accelerate electrolyte diffusion,and suppress structural collapse during circulation.Subsequently,H_(2)O molecules are introduced into the interlayer of VO_(x) through a highly efficient in-situ electrochemical activation process,facilitating the intercalation and diffusion of zinc ions.After the activation,an optimal sample exhibits a high specific capacity of 464.3 mA h g^(-1) at0.2 A g^(-1) and 395.2 mA h g^(-1) at 10 A g^(-1),indicating excellent rate performance.Moreover,the optimal sample maintains a capacity retention of about 89.3% after 2500 cycles at 10 A g^(-1).Density functional theory calculation demonstrates that the presence of oxygen vacancies and intercalated water molecules can significantly reduce the diffusion barrier for zinc ions.In addition,it is proved that the storage of zinc ions in the cathode is achieved by reversible intercalation/extraction during the charge and discharge process through various ex-situ analysis technologies.This work demonstrates that the p-VO_(x)@C has great potential for applications in aqueous ZIBs after electrochemical activation.
基金supported by the grants from the Chinese Academy of Sciences(124GJHZ2023031MI)the National Natural Science Foundation of China(52173274)+1 种基金the National Key R&D Project from the Ministry of Science and Technology(2021YFA1201603)the Fundamental Research Funds for the Central Universities.
文摘Aqueous Zn-ion batteries(AZIBs)are recognized as a promising energy storage system with intrinsic safety and low cost,but its applications still rely on the design of high-capacity and stable-cycling cathode materials.In this work,we present an intercalation mechanism-based cathode materials for AZIB,i.e.the vanadium oxide with pre-intercalated manganese ions and lattice water(noted as MVOH).The synergistic effect between Mn^(2+)and lattice H_(2)O not only expands the interlayer spacing,but also significantly enhances the structural stability.Systematic in-situ and ex-situ characterizations clarify the Zn^(2+)/H^(+)co–(de)intercalation mechanism of MVOH in aqueous electrolyte.The demonstrated remarkable structure stability,excellent kinetic behaviors and ion-storage mechanism together enable the MVOH to demonstrate satisfactory specific capacity of 450 mA h g^(−1)at 0.2 A g^(−1),excellent rate performance of 288.8 mA h g^(−1)at 10 A g^(−1)and long cycle life over 20,000 cycles at 5 A g^(−1).This work provides a practical cathode material,and contributes to the understanding of the ion-intercalation mechanism and structural evolution of the vanadium-based cathode for AZIBs.
基金supported by the National Natural Science Foundation of China(No.51872090)Natural Science Foundation of Hebei Province(No.E2019209433,E2022209158)Colleges and Universities in Hebei Province Science and Technology Research Project(No.JZX2024026).
文摘The scarcity of wettability,insufficient active sites,and low surface area of graphite felt(GF)have long been suppressing the performance of vanadium redox flow batteries(VRFBs).Herein,an ultra-homogeneous multipledimensioned defect,including nano-scale etching and atomic-scale N,O codoping,was used to modify GF by the molten salt system.NH_(4)Cl and KClO_(3) were added simultaneously to the system to obtain porous N/O co-doped electrode(GF/ON),where KClO_(3) was used to ultra-homogeneously etch,and O-functionalize electrode,and NH4Cl was used as N dopant,respectively.GF/ON presents better electrochemical catalysis for VO_(2)+/VO_(2)+ and V3+/V2+ reactions than only O-functionalized electrodes(GF/O)and GF.The enhanced electrochemical properties are attributed to an increase in active sites,surface area,and wettability,as well as the synergistic effect of N and O,which is also supported by the density functional theory calculations.Further,the cell using GF/ON shows higher discharge capacity,energy efficiency,and stability for cycling performance than the pristine cell at 140 mA cm^(−2) for 200 cycles.Moreover,the energy efficiency of the modified cell is increased by 9.7% from 55.2% for the pristine cell at 260 mA cm^(−2).Such an ultra-homogeneous etching with N and O co-doping through“boiling”molten salt medium provides an effective and practical application potential way to prepare superior electrodes for VRFB.
基金This work was financially supported by the National Natural Science Foundation of China(No.51874018)the Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2022-07).
文摘Vanadium and its derivatives are used in various industries,including steel,metallurgy,pharmaceuticals,and aerospace engineering.Although China has massive reserves of stone coal resources,these resources have low grades.Therefore,the effective extraction and recovery of metallic vanadium from stone coal is an important way to realize the efficient resource utilization of stone coal vanadium ore.Herein,Bacillus mucilaginosus was selected as the leaching strain.The vanadium leaching rate reached 35.5%after 20 d of bioleaching under optimal operating conditions.The cumulative vanadium leaching rate in the contact group reached 35.5%,which was higher than that in the noncontact group(9.3%).The metabolites of B.mucilaginosus,such as oxalic,tartaric,citric,and malic acids,dominated in bioleaching,accounting for 73.8%of the vanadium leaching rate.Interestingly,during leaching,the presence of stone coal stimulated the expression of carbonic anhydrase in bacterial cells,and enzyme activity increased by 1.335-1.905 U.Enzyme activity positively promoted the production of metabolite organic acids,and total organic acid content increased by 39.31 mg·L^(-1),resulting in a reduction of 2.51 in the pH of the leaching system with stone coal.This effect favored the leaching of vanadium from stone coal.Atomic force microscopy illustrated that bacterial leaching exacerbated corrosion on the surface of stone coal beyond 10 nm.Our study provides a clear and promising strategy for exploring the bioleaching mechanism from the perspective of microbial enzyme activity and metabolites.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.52173091,51973235)the Hubei Provincial Natural Science Foundation of China(Grant No.2021CFA022)Fundamental Research Funds for Central Universities(Grant No.CPT22023).
文摘Synergistic regulation of hierarchical nanostructures and defect engineering is effective in accelerating electron and ion transport for metal oxide electrodes.Herein,carbon nanofiber-supported V_(2)O_(3) with enriched oxygen vacancies(OV-V_(2)O_(3)@CNF)was fabricated using the facile electrospinning method,followed by thermal reduction.Differing from the traditional particles embedded within carbon nanofibers or irregularly distributed between carbon nanofibers,the free-standing OV-V_(2)O_(3)@CNF allows for V_(2)O_(3) nanosheets to grow vertically on one-dimensional(1D)carbon nanofibers,enabling abundant active sites,shortened ion diffusion pathway,continuous electron transport,and robust structural stability.Meanwhile,density functional theory calculations confirmed that the oxygen vacancies can promote intrinsic electron conductivity and reduce ion diffusion energy barrier.Consequently,the OV-V_(2)O_(3)@CNF anode delivers a large reversible capacity of 812 mAh g^(-1) at 0.1 A g^(-1),superior rate capability(405 mAh g^(-1) at 5 A g^(-1)),and long cycle life(378 mAh g^(-1) at 5 A g^(-1) after 1000 cycles).Moreover,an all-vanadium full battery(V2O5//OV-V_(2)O_(3)@CNF)was assembled using an OV-V_(2)O_(3)@CNF anode and a V2O5 cathode,which outputs a working voltage of 2.5 V with high energy density and power density,suggesting promising practical application.This work offers fresh perspectives on constructing hierarchical 1D nanofiber electrodes by combining defect engineering and electrospinning technology.
基金supported financially by the Natural Science Foundation of Shandong Province,China(grant numbers ZR2020QE067,ZR2020QB117,and ZR2022MB143)the New Colleges and Universities Twenty Foundational Projects of Jinan City,China(grant number 2021GXRC068)+2 种基金the National Natural Science Foundation of China,China(grant number 22208174)The Scientific Research Foundation in Qilu University of Technology(Shandong Academy of Sciences),China(grant numbers 2023PY002)The Talent research project of Qilu University of Technology(Shandong Academy of Sciences),China(grant numbers 2023RCKY013)。
文摘Vanadium-based electrodes are regarded as attractive cathode materials in aqueous zinc ion batteries(ZIBs)caused by their high capacity and unique layered structure.However,it is extremely challenging to acquire high electrochemical performance owing to the limited electronic conductivity,sluggish ion kinetics,and severe volume expansion during the insertion/extraction process of Zn^(2+).Herein,a series of V_(2)O_(3)nanospheres embedded N-doped carbon nanofiber structures with various V_(2)O_(3)spherical morphologies(solid,core-shell,hollow)have been designed for the first time by an electrospinning technique followed thermal treatments.The N-doped carbon nanofibers not only improve the electrical conductivity and the structural stability,but also provides encapsulating shells to prevent the vanadium dissolution and aggregation of V_(2)O_(3)particles.Furthermore,the varied morphological structures of V_(2)O_(3)with abundant oxygen vacancies can alleviate the volume change and increase the Zn^(2+)pathway.Besides,the phase transition between V_(2)O_(3)and Zn_XV_(2)O_(5-m)·n H_(2)O in the cycling was also certified.As a result,the as-obtained composite delivers excellent long-term cycle stability and enhanced rate performance for coin cells,which is also confirmed through density functional theory(DFT)calculations.Even assembled into flexible ZIBs,the sample still exhibits superior electrochemical performance,which may afford new design concept for flexible cathode materials of ZIBs.
基金supported by the National Natural Science Foundation of China(Grant Nos.52072322,22209137,51604250)the Department of Science and Technology of Sichuan Province(CN)(GrantNos.2022YFG0294,23GJHZ0147,23ZDYF0262)Production-Education Integration Demonstration Project of Sichuan Province"Photovoltaic Industry Production-Education Integration Comprehensive Demonstration Base of Sichuan Province"(Sichuan Financial Education[2022]No.106.n)。
文摘Sodium-based storage devices based on conversion-type metal sulfide anodes have attracted great atten-tion due to their multivalent ion redox reaction ability.However,they also suffer from sodium polysul-fides(NaPSs)shuttling problems during the sluggish Na^(+) redox process,leading to"voltage failure"and rapid capacity decay.Herein,a metal cobalt-doping vanadium disulfide(Co-VS_(2))is proposed to simulta-neously accelerate the electrochemical reaction of VS_(2) and enhance the bidirectional redox of soluble NaPSs.It is found that the strong adsorption of NaPSs by V-Co alloy nanoparticles formed in situ during the conversion reaction of Co-VS_(2) can effectively inhibit the dissolution and shuttle of NaPSs,and ther-modynamically reduce the formation energy barrier of the reaction path to effectively drive the complete conversion reaction,while the metal transition of Co elements enhances reconversion kinetics to achieve high reversibility.Moreover,Co-VS_(2) also produce abundant sulfur vacancies and unsaturated sulfur edge defects,significantly improve ionic/electron diffusion kinetics.Therefore,the Co-VS_(2) anode exhibits ultrahigh rate capability(562 mA h g^(-1) at 5 A g^(-1)),high initial coulombic efficiency(~90%)and 12,000 ultralong cycle life with capacity retention of 90%in sodium-ion batteries(SIBs),as well as impressive energy/power density(118 Wh kg^(-1)/31,250 W kg^(-1))and over 10.000 stable cycles in sodium-ion hybrid capacitors(SIHCs).Moreover,the pouch cell-type SIHC displays a high-energy density of 102 Wh kg^(-1) and exceed 600 stable cycles.This work deepens the understanding of the electrochemical reaction mechanism of conversion-type metal sulfide anodes and provides a valuable solution to the shuttlingofNaPSs inSIBsandSIHCs.
基金the financial support from the National Key Research and Development Program of China(2022YFA1207503)the Giga Force Electronics Interdisciplinary Funding(JJHXM002208-2023)。
文摘Exploring suitable high-capacity V_(2)O_(5)-based cathode materials is essential for the rapid advancement of aqueous zinc ion batteries(ZIBs).However,the typical problem of slow Zn^(2+)diffusion kinetics has severely limited the feasibility of such materials.In this work,unique hydrated vanadates(CaVO,BaVO)were obtained by intercalation of Ca^(2+)or Ba^(2+)into hydrated vanadium pentoxide.In the CaVO//Zn and BaVO//Zn batteries systems,the former delivered up to a 489.8 mAh g^(-1)discharge specific capacity at 0.1 A g^(-1).Moreover,the remarkable energy density of 370.07 Wh kg^(-1)and favorable cycling stability yard outperform BaVO,pure V_(2)O_(5),and many reported cathodes of similar ionic intercalation compounds.In addition,pseudocapacitance analysis,galvanostatic intermittent titration(GITT)tests,and Trasatti analysis revealed the high capacitance contribution and Zn^(2+)diffusion coefficient of CaVO,while an in-depth investigation based on EIS elucidated the reasons for the better electrochemical performance of CaVO.Notably,ex-situ XRD,XPS,and TEM tests further demonstrated the Zn^(2+)insertion/extraction and Zn-storage mechanism that occurred during the cycle in the CaVO//Zn battery system.This work provides new insights into the intercalation of similar divalent cations in vanadium oxides and offers new solutions for designing cathodes for high-capacity aqueous ZIBs.
基金financial support through a KekuléPh.D.fellowship by the Fonds der Chemischen Industrie(FCI)support from the China Scholarship Council(No.202106950013)。
文摘The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble formation is crucial.This benchmarking study locally analyzes the bubble distribution in thick,porous electrodes for the first time using deep learning-based image segmentation of synchrotron X-ray micro-tomograms.Each large three-dimensional data set was processed precisely in less than one minute while minimizing human errors and pointing out areas of increased HER activity in VRFBs.The study systematically varies the electrode potential and material,concluding that more negative electrode potentials of-200 m V vs.reversible hydrogen electrode(RHE)and lower cause more substantial bubble formation,resulting in bubble fractions of around 15%–20%in carbon felt electrodes.Contrarily,the bubble fractions stay only around 2%in an electrode combining carbon felt and carbon paper.The detected areas with high HER activity,such as the border subregion with more than 30%bubble fraction in carbon felt electrodes,the cutting edges,and preferential spots in the electrode bulk,are potential-independent and suggest that larger electrodes with a higher bulk-to-border ratio might reduce HER-related performance losses.The described combination of electrochemical measurements,local X-ray microtomography,AI-based segmentation,and 3D morphometric analysis is a powerful and novel approach for local bubble analysis in three-dimensional porous electrodes,providing an essential toolkit for a broad community working on bubble-generating electrochemical systems.
基金This work was supported by the National Science Foundation(CBET-1803256)Dr.C.Liu acknowledges the support from National Natural Science Foundation of China(52102277)the Fundamental Research Funds for the Central Universities,conducted by Tongji University.
文摘Vanadium oxides,par-ticularly hydrated forms like V_(2)O_(5)·nH_(2)O(VOH),stand out as promising cathode candidates for aqueous zinc ion batteries due to their adjustable layered structure,unique electronic characteristics,and high theoretical capacities.However,challenges such as vanadium dissolution,sluggish Zn^(2+)diffusion kinetics,and low operating voltage still hinder their direct application.In this study,we present a novel vanadium oxide([C_(6)H_(6)N(CH_(3))_(3)]_(1.08)V_(8)O_(20)·0.06H_(2)O,TMPA-VOH),developed by pre-inserting trimethylphenylammonium(TMPA+)cations into VOH.The incorporation of weakly polarized organic cations capitalizes on both ionic pre-intercalation and molecular pre-intercalation effects,resulting in a phase and morphology transition,an expansion of the interlayer distance,extrusion of weakly bonded interlayer water,and a substantial increase in V^(4+)content.These modifications synergistically reduce the electrostatic interactions between Zn^(2+)and the V-O lattice,enhancing structural stability and reaction kinetics during cycling.As a result,TMPA-VOH achieves an elevated open circuit voltage and operation voltage,exhibits a large specific capacity(451 mAh g^(-1)at 0.1 A g^(-1))coupled with high energy efficiency(89%),the significantly-reduced battery polarization,and outstanding rate capability and cycling stability.The concept introduced in this study holds great promise for the development of high-performance oxide-based energy storage materials.
基金National Natural Science Foundation of China,Grant/Award Numbers:51874362,51932011,52002407Scientific Research Project of Hunan Provincial Department of Education,Grant/Award Number:21B0815。
文摘Hard carbons are promising anode materials for sodium-ion batteries.To meet practical requirements,searching for durable and conductive carbon with a stable interface is of great importance.Here,we prepare a series of vanadiummodified hard carbon submicrospheres by using hydrothermal carbonization followed by high-temperature pyrolysis.Significantly,the introduction of vanadium can facilitate the nucleation and uniform growth of carbon spheres and generate abundant V-O-C interface bonds,thus optimizing the reaction kinetic.Meanwhile,the optimized hard carbon spheres modified by vanadium carbide,with sufficient pseudographitic domains,provide more active sites for Na ion migration and storage.As a result,the HC/VC-1300 electrode exhibits excellent Na storage performance,including a high capacity of 420 mAh g^(-1) at 50mA g^(-1) and good rate capability at 1 A g^(-1).This study proposes a new strategy for the synthesis of hard carbon spheres with high tap density and emphasizes the key role of pseudographitic structure for Na storage and interface stabilization.
基金the Shenyang University of Technology(QNPY202209-4)the Key R&D project of Liaoning Province of China(2020JH2/10300079)+2 种基金the“Liaoning BaiQianWan Talents Program”(2018921006)the Liaoning Revitalization Talents Program(XLYC1908034)the National Natural Science Foundation of China(21571132).
文摘Potassium-ion batteries(PIBs)have been considered as promising candidates in the post-lithium-ion battery era.Till now,a large number of materials have been used as electrode materials for PIBs,among which vanadium oxides exhibit great potentiality.Vanadium oxides can provide multiple electron transfers during electrochemical reactions because vanadium possesses a variety of oxidation states.Meanwhile,their relatively low cost and superior material,structural,and physicochemical properties endow them with strong competitiveness.Although some inspiring research results have been achieved,many issues and challenges remain to be further addressed.Herein,we systematically summarize the research progress of vanadium oxides for PIBs.Then,feasible improvement strategies for the material properties and electrochemical performance are introduced.Finally,the existing challenges and perspectives are discussed with a view to promoting the development of vanadium oxides and accelerating their practical applications.
基金supported by the National Natural Science Foundation of China(No.51904211)the National Natural Science Foundation of China(No.52004187)。
文摘Microwave heating can rapidly and uniformly raise the temperature and accelerate the reaction rate.In this paper,microwave heating was used to improve the acid leaching,and the mechanism was investigated via microscopic morphology analysis and numerical simulation by COMSOL Multiphysics software.The effects of the microwave power,leaching temperature,CaF_(2) dosage,H_(2)SO_(4) concentration,and leaching time on the vanadium recovery were investigated.A vanadium recovery of 80.66%is obtained at a microwave power of 550 W,leaching temperature of 95℃,CaF_(2) dosage of 5wt%,H_(2)SO_(4) concentration of 20vol%,and leaching time of 2.5 h.Compared with conventional leaching technology,the vanadium recovery increases by 6.18%,and the leaching time shortens by 79.17%.More obvious pulverization of shale particles and delamination of mica minerals happen in the microwave-assisted leaching process.Numerical simulation results show that the temperature of vanadium shales increases with an increase in electric field(E-field).The distributions of E-field and temperature among vanadium shale particles are relatively uniform,except for the higher content at the contact position of the particles.The analysis results of scaleup experiments and leaching experiments indicate high-temperature hot spots in the process of microwave-assisted leaching,and the local high temperature destroys the mineral structure and accelerates the reaction rate.
基金financially supported by the National Natural Science Foundation of China (No. 51801078)the Natural Science Foundation of Jiangsu Province (No. BK20180986)
文摘The practical application of magnesium hydride(MgH_(2))was seriously limited by its high desorption temperature and slow desorp-tion kinetics.In this study,a bullet-like catalyst based on vanadium related MOFs(MOFs-V)was successfully synthesized and doped with MgH_(2) by ball milling to improve its hydrogen storage performance.Microstructure analysis demonstrated that the as-synthesized MOFs was consisted of V_(2)O_(3) with a bullet-like structure.After adding 7wt%MOFs-V,the initial desorption temperature of MgH_(2) was reduced from 340.0 to 190.6℃.Besides,the MgH_(2)+7wt%MOFs-V composite released 6.4wt%H_(2) within 5 min at 300℃.Hydrogen uptake was started at 60℃under 3200 kPa hydrogen pressure for the 7wt%MOFs-V containing sample.The desorption and absorption apparent activity energies of the MgH_(2)+7wt%MOFs-V composite were calculated to be(98.4±2.9)and(30.3±2.1)kJ·mol^(-1),much lower than(157.5±3.3)and(78.2±3.4)kJ·mol^(−1) for the as-prepared MgH_(2).The MgH_(2)+7wt%MOFs-V composite exhibited superior cyclic property.During the 20 cycles isothermal dehydrogenation and hydrogenation experiments,the hydrogen storage capacity stayed almost unchanged.X-ray diffraction(XRD)and X-ray photoelectron spectrometer(XPS)measurements confirmed the presence of metallic vanadium in the MgH_(2)+7wt%MOFs-V composite,which served as catalytic unit to markedly improve the hydrogen storage properties of Mg/MgH_(2) system.
基金financialy supported by the National Natural Science Foundation of China(Nos.22109140,21875221,and 22075223)Distinguished Young Scholars Innovation Team of Zhengzhou University(No.32320275)the Youth Talent Support Program of High-Level Talents Special Support Plan in Henan Province(ZYQR201810148)
文摘Rechargeable aqueous zinc-ion batteries are promising candidate for gridscale energy storage.However,the development of zinc-ion batteries has been plagued by the lack of cathode materials with high specific capacity and superior lifespan.Herein,hexagonal Cs_(0.3)V_(2)O_(5)cathode is fabricated and investigated in zinc-ion batteries.Compared with the traditional vanadium oxides,the introduction of Cs changes the periodic atomic arrangements,which not only stabilizes the open framework structure but also facilitates the Zn^(2+)diffusion with a lower migration energy barrier.Consequently,high specific capacity of 543.8 mA h g^(-1)at 0.1 A g^(-1)is achieved,which surpasses most of reported cathode materials in zinc-ion batteries.The excellent cycle life is achieved over 1000 cycles with about 87.8%capacity retention at 2 A g^(-1).Furthermore,the morphological evolution and energy storage mechanisms are also revealed via a series of techniques.This work opens up a phase engineering strategy to fabricate the hexagonal vanadium oxide and elucidate the application of phase-dependent cathodes in zinc-ion batteries.
基金supported by the National Key Research and Development Program of China(No.2020YFC1909704)the National Natural Science Foundation of China(Nos.51904222 and 52074068)+1 种基金the Shaanxi Innovation Capacity Support Plan(2020KJXX-053)the Shaanxi Natural Science Basic Research Program(No.2019JQ-468).
文摘The purpose of this study is to apply process mineralogy as a practical tool to further understand and analyze the reasons for low leaching rates in the curing-leaching process of vanadium-bearing stone coal and to find a solution or improvement to optimize the leaching index.Using vanadium-bearing stone coal with the V2O5 mass fraction of 0.88%as the research object,the effects of particle size,mineral composition,and sulfuric acid curing on the feed,intermediate,and final products of curing-leaching were analyzed.The main vanadium-bearing minerals in the feed samples included sericite/illite,montmorillonite,kaolinite,limonite,and schreyerite.Through the penetration depth analysis of sulfuric acid,the reason for the high vanadium content in the coarse leaching residue(0.205%V2O5)was found,mainly due to the poor curing effect and incomplete washing after screening.Therefore,thorough washing after sieving and further optimizing the curing process are necessary.The vanadium content of the fine leaching residue(0.078%)was low and the curing-leaching effect was good.However,the vanadium content in the thickened residue(0.296%)exceeded that in the fine leaching residue,which was attributed to the neutralization reaction in the#1 thickener.To solve this problem,the neutralization and thickening processes should be performed in separate equipment.The analysis and detection of key products is helpful for identifying problems and improving the curing-leaching circuit process.
基金support from National Natural Science Foundation of China(51874142)Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program(2019TQ05L903)Young Elite Scientists Sponsorship Program by CAST(2019QNRC001).
文摘Niobium pentoxide(Nb_(2)O_(5))anodes have gained increasing attentions for high-power lithium-ion batteries owing to the outstanding rate capability and high safety.However,Nb2O5 anode suffers poor cycle stability even after modified and the unrevealed mechanisms have restricted the practical applications.Herein,the over-reduction of Nb5+has been demonstrated to be the critical reason for the capacity loss for the first time.Besides,an effective competitive redox strategy has been developed to solve the rapid capacity decay of Nb_(2)O_(5),which can be achieved by the incorporation of vanadium to form a new rutile VNbO_(4)anode.The highly reversible V^(3+)/V^(2+)redox couple in VNbO_(4)can effectively inhibit the over-reduction of Nb^(5+).Besides,the electron migration from V^(3+)to Nb5+can greatly increase the intrinsic electronic conductivity for VNbO4.As a result,VNbO4 anode delivers a high capacity of 206.1 mAh g^(−1)at 0.1 A g^(−1),as well as remarkable cycle performance with a retention of 93.4%after 2000 cycles at 1.0 A g^(−1).In addition,the assembled lithium-ion capacitor demonstrates a high energy density of 44 Wh kg^(−1)at 5.8 kW kg^(−1).In summary,our work provides a new insight into the design of ultra-fast and durable anodes.
基金supported by the National Natural Science Foundation for Young Scientists of China(22108185,51906168,52276208).
文摘Release of vanadium(V)from industry has threatened the environment and human health.In this paper,a removal method of vanadium(V)is proposed using a by-product of the yellow phosphorus industry(phosphorus-iron)as a reducing agent.The thermodynamics analysis shows that the Gibbs free energy is always negative from 0 to 100℃,indicating a spontaneous process.Effect of the phosphorus-iron slag/sulfuric acid dosage and temperature on the removal efficiency is comprehensively studied,and the kinetics parameters are calculated based on a quasi-first order reaction kinetics model.Results indicate that vanadium(V)can be entirely reduced by using phosphorus-iron slag,the frequency factor and apparent activation energy are 3.23×10^(9)min^(-1)and 64.50 kJ.mol^(-1) for vanadium(V)reduction.Based on above results,a lab-scale reactor is constructed and achieves a removal efficiency of~100%and a treatment capacity of 200 ml vanadium(V)solution(2 g.L^(-1))within 3 h.This work demonstrates the feasibility of vanadium(V)reduction using phosphorus-iron slag as a reducing agent in applications.
基金the Natural Science Foundation of Guangdong Province of China(2023A1515011672)the Educational Commission of Guangdong Province of China(2022ZDZX3048)+1 种基金the Research projects for college students of Guangdong Industry Polytechnic College(XSKYL202208)the Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province,School of Chemistry and Chemical Engineering,Hainan Normal University,Haikou,South Longkun Rd.571158,P.R.China(KFKT2023003)。
文摘Aqueous zinc ion battery(ZIB)with many virtues such as high safety,cost-effective,and good environmental compatibility is a large-scale energy storage technology with great application potential.Nevertheless,its application is severely hindered by the slow diffusion of zinc ions in desirable cathode materials.Herein,a technique of water-incorporation coupled with oxygen-vacancy modulation is exploited to improve the zinc ions diffusion kinetics in vanadium pentoxide(V_(2)O_5)cathode for ZIB.The incorporated water molecules replace lattice oxygen in V_(2)O_5,and function as pillars to expand interlayer distance.So the structural stability can be enhanced,and the zinc ions diffusion kinetics might also be promoted during the repeated intercalation/deintercalation.Meanwhile,the lattice water molecules can effectively enhance conductivity due to the electronic density modulation effect.Consequently,the modulated V_(2)O_5(H-V_(2)O_5)cathode behaves with superior rate capacity and stable durability,achieving 234 mA h g^(-1)over 9000 cycles even at 20 A g^(-1).Furthermore,a flexible all-solid-state(ASS)ZIB has been constructed,exhibiting an admirable energy density of 196.6 Wh kg^(-1)and impressive power density of 20.4 kW kg^(-1)as well as excellent long-term lifespan.Importantly,the assembled flexible ASS ZIB would be able to work in a large temperature span(from-20 to 70℃).Additionally,we also uncover the energy storage mechanism of the H-V_(2)O_5 electrode,offering a novel approach for creating high-kinetics cathodes for multivalent ion storage.
基金supported by the National Natural Science Foundation of China(21965027 and 22065030)the Natural Science Foundation of Ningxia Province(2022AAC03109)the National First-rate Discipline Construction Project of Ningxia:Chemical Engineering and Technology(NXY-LXK2017A04)。
文摘With the rise of aqueous multivalent rechargeable batteries,inorganic-organic hybrid cathodes have attracted more and more attention due to the complement of each other’s advantages.Herein,a strategy of designing hybrid cathode is adopted for high efficient aqueous zinc-ion batteries(AZIBs).Methylene blue(MB)intercalated vanadium oxide(HVO-MB)was synthesized through sol-gel and ion exchange method.Compared with other organic-inorganic intercalation cathode,not only can the MB intercalation enlarge the HVO interlayer spacing to improve ion mobility,but also provide coordination reactions with the Zn^(2+)to enhance the intrinsic electrochemical reaction kinetics of the hybrid electrode.As a key component for the cathode of AZIBs,HVO-MB contributes a specific capacity of 418 mA h g^(-1) at 0.1 A g^(-1),high rate capability(243 mA h g^(-1) at 5 A g^(-1))and extraordinary stability(88%of capacity retention after 2000cycles at a high current density of 5 A g^(-1))in 3 M Zn(CF_(3)SO_(3))_(2) aqueous electrolyte.The electrochemical kinetics reveals HVO-MB characterized with large pseudocapacitance charge storage behavior due to the fast ion migration provided by the coordination reaction and expanded interlayer distance.Furthermore,a mixed energy storage mechanism involving Zn^(2+)insertion and coordination reaction is confirmed by various ex-situ characterization.Thus,this work opens up a new path for constructing the high performance cathode of AZIBs through organic-inorganic hybridization.