期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Thermo-Economic Performance of Geothermal Driven High-Temperature Flash Tank Vapor Injection Heat Pump System:A Comparison Study
1
作者 Huashan Li Xiaoshuang Zhao +2 位作者 Sihao Huang Lingbao Wang Jiongcong Chen 《Energy Engineering》 EI 2023年第8期1817-1835,共19页
Process heating constitutes a significant share of final energy consumption in the industrial sector around the world.In this paper,a high-temperature heat pump(HTHP)using flash tank vapor injection technology(FTVI)is... Process heating constitutes a significant share of final energy consumption in the industrial sector around the world.In this paper,a high-temperature heat pump(HTHP)using flash tank vapor injection technology(FTVI)is proposed to develop low-temperature geothermal source for industrial process heating with temperature above 100°C.With heat sink output temperatures between 120°C and 150°C,the thermo-economic performance of the FTVI HTHP system using R1234ze(Z)as refrigerant is analyzed and also compared to the single-stage vapor compression(SSVC)system by employing the developed mathematical model.The coefficient of performance(COP),exergy efficiency(ηexe),net present value(NPV)and payback period(PBP)are used as performance indicators.The results show that under the typical working conditions,the COP andηexe of FTVI HTHP system are 3.00 and 59.66%,respectively,and the corresponding NPV and PBP reach 8.13×106 CNY and 4.13 years,respectively.Under the high-temperature heating conditions,the thermo-economic performance of the FTVI HTHP system is significantly better than that of the SSVC system,and the larger the temperature lift,the greater the thermo-economic advantage of the FTVI HTHP system.Additionally,the FTVI HTHP system is more capable than the SSVC system in absorbing the financial risks associated with changes of electricity price and natural gas price. 展开更多
关键词 Geothermal water high-temperature heat pump flash tank vapor injection thermo-economic performance
下载PDF
Design and analysis of a novel dual source vapor injection heat pump using exhaust and ambient air
2
作者 Jing Li Yi Fan +5 位作者 Xudong Zhao Xiaoman Bai Jinzhi Zhou Ali Badiei Steve Myers Xiaoli Ma 《Energy and Built Environment》 2022年第1期95-104,共10页
A novel dual source vapor injection heat pump(DSVIHP)using exhaust and ambient air is proposed.The air exhausted from the building first releases energy to the medium-pressure evaporator and is then mixed with the amb... A novel dual source vapor injection heat pump(DSVIHP)using exhaust and ambient air is proposed.The air exhausted from the building first releases energy to the medium-pressure evaporator and is then mixed with the ambient air to heat the low-pressure evaporator.A vapor injection(VI)compressor of two inlets is connected with the low and medium pressure evaporators.It’s first time that a VI compressor is employed to recover the ventilation heat.The system can minimize the ventilation heat loss and provide a unique defrosting approach by using the exhaust waste heat.Fundamentals of the proposed DSVIHP are illustrated.Mathematical models are built.Both energetic and exergetic analyses are carried out under variable conditions.The results indicate that the DSVIHP has superior thermodynamic performance.The superiority is more appreciable at a lower ambient temperature.It has a higher COP than the conventional vapor injection heat pump and air source heat pump by 11.3%and 23.2%respectively at an ambient temperature of-10°C and condensation temperature of 45°C.The waste heat recovery ratio from the exhaust air is more than 100%.The novel DSVIHP has great potential in the cold climate area application. 展开更多
关键词 Dual source vapor injection heat pump Exhaust air Waste heat recovery COP DEFROSTING
下载PDF
Experimental analysis of volatile liquid injection into a fluidized bed 被引量:2
3
作者 A.H. Ahmadi Motlagh John R. Grace +3 位作者 Cedric Briens Franco Berruti Masoumeh Farkhondehkavaki Majid Hamidi 《Particuology》 SCIE EI CAS CSCD 2017年第5期39-47,共9页
Experiments were conducted on a lab-scale fluidized bed to study the distribution of liquid ethanol injected into fluidized catalyst particles. Electrical capacitance measurements were used to study the liquid distrib... Experiments were conducted on a lab-scale fluidized bed to study the distribution of liquid ethanol injected into fluidized catalyst particles. Electrical capacitance measurements were used to study the liquid distribution inside the bed, and a new method was developed to determine the liquid content inside fluidized beds of fluid catalytic cracking particles. The results shed light on the complex liquid injection region and reveal the strong effect of superficial gas velocity on liquid distribution inside the fluidized bed, which is also affected by the imbibition of liquid inside particle pores. Particle internal porosity was found to play a major role when the changing mass of liquid in the bed was monitored. The results also showed that the duration of liquid injection affected liquid-solid contact inside the bed and that liouid-solid mixin~ was not homogeneous durin~ the limited liouid injection time. 展开更多
关键词 Liquid injection Fluidized bed Fluid catalytic cracking Hydrodynamics vaporization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部