The variation of the amplitude of waves with varying incident angles when waves propagate through a typical approach channel is discussed by a numerical calculation method, the result of which shows that the influence...The variation of the amplitude of waves with varying incident angles when waves propagate through a typical approach channel is discussed by a numerical calculation method, the result of which shows that the influence of the channel on wave propagation is obvious. When the wave propagation direction is in coincidence with the channel axis, the wave amplitude ratio will decrease with the increase of propagation distance. When the incident angle is 15 - 30 , there appears an area of larger wave amplitude ratio on the side slope facing the waves, but at the another side, the wave amplitude ratio is generally small, indicating that the channel has a shielding effect. When waves propagate across the channel perpendicularly, the wave amplitude ratio can be calculated with the shallow water coefficient.展开更多
文摘The variation of the amplitude of waves with varying incident angles when waves propagate through a typical approach channel is discussed by a numerical calculation method, the result of which shows that the influence of the channel on wave propagation is obvious. When the wave propagation direction is in coincidence with the channel axis, the wave amplitude ratio will decrease with the increase of propagation distance. When the incident angle is 15 - 30 , there appears an area of larger wave amplitude ratio on the side slope facing the waves, but at the another side, the wave amplitude ratio is generally small, indicating that the channel has a shielding effect. When waves propagate across the channel perpendicularly, the wave amplitude ratio can be calculated with the shallow water coefficient.