To overcome the disadvantages of displacement ventilation( DV) and traditional mixing ventilation( MV) system,a new ventilation system known as impinging jet ventilation system( IJVS)has been developing. The warm air ...To overcome the disadvantages of displacement ventilation( DV) and traditional mixing ventilation( MV) system,a new ventilation system known as impinging jet ventilation system( IJVS)has been developing. The warm air can be supplied with impinging jet ventilation( IJV), while the DV is only used for cooling.However,the flow and temperature field of IJV under heating scenario has had few references. The paper is mainly focused on computational fluid dynamics( CFD) and developing an adequate correlation between the distance L that warm air can reach and different parameters in the warm IJVS by using response surface methodology( RSM). The results indicate that L decreases as the supply velocity υ decreases but increases as the supply temperature difference ΔT or the discharge height h decreases. In the variable air volume( VAV) system, it is necessary to determine supply parameters both under the maximum-heat-load condition and the small-heat-load condition. Unlike the VAV system,the constant air volume( CAV) system has no need to study the small-heat-load condition. Draught discomfort near the nozzle becomes the issue of concern in IJVS, thus the suitable discharge height is of great importance in design and can be calculated based on the predictive model.展开更多
Indoor CO2 concentration depends on the number of persons, their metabolic rates, other sources of indoor pollution, ventilation rate and ventilation efficiency. These factors are not considered by the Spanish technic...Indoor CO2 concentration depends on the number of persons, their metabolic rates, other sources of indoor pollution, ventilation rate and ventilation efficiency. These factors are not considered by the Spanish technical building code since ventilation is set only by a fixed air change rate. This paper aims to explore the possibilities of DCVS (demand controlled ventilation systems) to ensure adequate and sustainable ventilation. It is based on a research project carried out by the University of the Basque Country (EHU-UPV) and Euskadi Public Housing and Soil Join-Stock Company (VISESA): the living rooms of 90 dwellings were provided with DCVS, where CO2 sensors were used to dynamically control the ventilation rate. Tests were carried out using tracer gas techniques, with results showing the air age to be adequate at every point of the occupied zones and free of stagnant areas, therefore proving the system's effectiveness and rapid response, and its energy savings.展开更多
The importance and necessity of energy saving in the world have been discussed for many years,but achieving a logical and transparent solution is still one of the main challenges and problems of the world’s eco...The importance and necessity of energy saving in the world have been discussed for many years,but achieving a logical and transparent solution is still one of the main challenges and problems of the world’s economy.The rapid growth of energy consumption in the last two decades has caused the security of the domestic energy supply of buildings to face serious problems.In this research,first by entering parameters such as the type of materials,doors and windows,and the type of soil on the floor connected to the ground,etc.in the heat and cold load calculation software(HAP Carrier)as the design calculations and then in the second step entering the specifications inferred from the Iran’s national building code as a reference for energy saving calculations,calculations are performed and compared as the first criterion,and finally these two outputs are compared.The actual energy consumption and determination of the building energy consumption index are determined as another criterion,as well as the degree of deviation from the actual consumption.The results showed that the theoretical method and the thermal and refrigeration load calculations of the Zanjan Gas Company building have 6%difference in cooling load but the heating load is about 34%different,which means for cooling loads,the theoretical model can be used with high accuracy but for heating loads,the national building code needs fundamental changes.展开更多
Digital twin is regarded as the next-generation technology for the effective operation of heating,ventilation and air conditioning(HVAC)systems.It is essential to calibrate the digital twin models to match them closel...Digital twin is regarded as the next-generation technology for the effective operation of heating,ventilation and air conditioning(HVAC)systems.It is essential to calibrate the digital twin models to match them closely with real physical systems.Conventional real-time calibration methods cannot satisfy such requirements since the computation loads are beyond acceptable tolerances.To address this challenge,this study proposes a clustering compression-based method to enhance the computation efficiency of digital twin model calibration for HVAC systems.This method utilizes clustering algorithms to remove redundant data for achieving data compression.Moreover,a hierarchical multi-stage heuristic model calibration strategy is developed to accelerate the calibration of similar component models.Its basic idea is that once a component model is calibrated by heuristic methods,its optimal solution is utilized to narrow the ranges of parameter probability distributions of similar components.By doing so,the calibration process can be guided,so that fewer iterations would be used.The performance of the proposed method is evaluated using the operational data from an HVAC system in an industrial building.Results show that the proposed clustering compression-based method can reduce computation loads by 97%,compared to the conventional calibration method.And the proposed hierarchical heuristic model calibration strategy is capable of accelerating the calibration process after clustering and saves 14.6%of the time costs.展开更多
基金National Natural Science Foundation of China(No.51278094)the Innovation Foundation of Shanghai Education Commission,China(No.13ZZ054)
文摘To overcome the disadvantages of displacement ventilation( DV) and traditional mixing ventilation( MV) system,a new ventilation system known as impinging jet ventilation system( IJVS)has been developing. The warm air can be supplied with impinging jet ventilation( IJV), while the DV is only used for cooling.However,the flow and temperature field of IJV under heating scenario has had few references. The paper is mainly focused on computational fluid dynamics( CFD) and developing an adequate correlation between the distance L that warm air can reach and different parameters in the warm IJVS by using response surface methodology( RSM). The results indicate that L decreases as the supply velocity υ decreases but increases as the supply temperature difference ΔT or the discharge height h decreases. In the variable air volume( VAV) system, it is necessary to determine supply parameters both under the maximum-heat-load condition and the small-heat-load condition. Unlike the VAV system,the constant air volume( CAV) system has no need to study the small-heat-load condition. Draught discomfort near the nozzle becomes the issue of concern in IJVS, thus the suitable discharge height is of great importance in design and can be calculated based on the predictive model.
文摘Indoor CO2 concentration depends on the number of persons, their metabolic rates, other sources of indoor pollution, ventilation rate and ventilation efficiency. These factors are not considered by the Spanish technical building code since ventilation is set only by a fixed air change rate. This paper aims to explore the possibilities of DCVS (demand controlled ventilation systems) to ensure adequate and sustainable ventilation. It is based on a research project carried out by the University of the Basque Country (EHU-UPV) and Euskadi Public Housing and Soil Join-Stock Company (VISESA): the living rooms of 90 dwellings were provided with DCVS, where CO2 sensors were used to dynamically control the ventilation rate. Tests were carried out using tracer gas techniques, with results showing the air age to be adequate at every point of the occupied zones and free of stagnant areas, therefore proving the system's effectiveness and rapid response, and its energy savings.
文摘The importance and necessity of energy saving in the world have been discussed for many years,but achieving a logical and transparent solution is still one of the main challenges and problems of the world’s economy.The rapid growth of energy consumption in the last two decades has caused the security of the domestic energy supply of buildings to face serious problems.In this research,first by entering parameters such as the type of materials,doors and windows,and the type of soil on the floor connected to the ground,etc.in the heat and cold load calculation software(HAP Carrier)as the design calculations and then in the second step entering the specifications inferred from the Iran’s national building code as a reference for energy saving calculations,calculations are performed and compared as the first criterion,and finally these two outputs are compared.The actual energy consumption and determination of the building energy consumption index are determined as another criterion,as well as the degree of deviation from the actual consumption.The results showed that the theoretical method and the thermal and refrigeration load calculations of the Zanjan Gas Company building have 6%difference in cooling load but the heating load is about 34%different,which means for cooling loads,the theoretical model can be used with high accuracy but for heating loads,the national building code needs fundamental changes.
基金support of the National Natural Science Foundation of China (No.51978601 and No.52161135202).
文摘Digital twin is regarded as the next-generation technology for the effective operation of heating,ventilation and air conditioning(HVAC)systems.It is essential to calibrate the digital twin models to match them closely with real physical systems.Conventional real-time calibration methods cannot satisfy such requirements since the computation loads are beyond acceptable tolerances.To address this challenge,this study proposes a clustering compression-based method to enhance the computation efficiency of digital twin model calibration for HVAC systems.This method utilizes clustering algorithms to remove redundant data for achieving data compression.Moreover,a hierarchical multi-stage heuristic model calibration strategy is developed to accelerate the calibration of similar component models.Its basic idea is that once a component model is calibrated by heuristic methods,its optimal solution is utilized to narrow the ranges of parameter probability distributions of similar components.By doing so,the calibration process can be guided,so that fewer iterations would be used.The performance of the proposed method is evaluated using the operational data from an HVAC system in an industrial building.Results show that the proposed clustering compression-based method can reduce computation loads by 97%,compared to the conventional calibration method.And the proposed hierarchical heuristic model calibration strategy is capable of accelerating the calibration process after clustering and saves 14.6%of the time costs.