Strong ground motion of an earthquake is simulated by using both staggered grid finite difference method (FDM) and stochastic method, respectively. The acceleration time histories obtained from the both ways and their...Strong ground motion of an earthquake is simulated by using both staggered grid finite difference method (FDM) and stochastic method, respectively. The acceleration time histories obtained from the both ways and their response spectra are compared. The result demonstrates that the former is adequate to simulate the low-frequency seismic wave; the latter is adequate to simulate the high-frequency seismic wave. Moreover, the result obtained from FDM can better reflect basin effects.展开更多
频域有限差分(finite difference frequency domain,FDFD)方法是地震波场模拟的常用方法,FDFD地震波场模拟的关键之一是构造能有效压制数值频散的FDFD系数。在已有的构造地震波场模拟FDFD系数的方法中,随一个网格内的波长个数变化的自适...频域有限差分(finite difference frequency domain,FDFD)方法是地震波场模拟的常用方法,FDFD地震波场模拟的关键之一是构造能有效压制数值频散的FDFD系数。在已有的构造地震波场模拟FDFD系数的方法中,随一个网格内的波长个数变化的自适应FDFD系数可以最大程度地压制数值频散。目前计算自适应FDFD系数的方法涉及角度积分、共轭梯度优化、顺序初值选取、光滑正则化等问题,不仅较难实现而且计算效率较低。为了简化自适应FDFD系数的计算并提高相应计算效率,本文提出一种新的计算自适应FDFD系数的方法。所提方法首先将不同离散传播角度的平面波解代入FDFD格式,构造相应的最小二乘问题。由于该最小二乘问题较为病态,常规的基于正规方程组的求解方法难以得到光滑的自适应FDFD系数,本文提出通过QR矩阵分解求解相应超定线性方程组来求解该最小二乘问题。相比已有的基于角度积分、共轭梯度优化、顺序初值选取的计算自适应FDFD系数的方法,所提方法在可以得到光滑自适应FDFD系数的基础上,不仅计算过程更简洁,且计算效率明显提高。数值波场模拟结果表明,基于QR矩阵分解的自适应系数FDFD方法可以达到与基于角度积分、共轭梯度优化、顺序初值选取的自适应系数FDFD方法相同的精度,同时所需的计算时间更少。展开更多
基金National Natural Science Foundation of China (5048003) and DAAD of Munich University, Germany.
文摘Strong ground motion of an earthquake is simulated by using both staggered grid finite difference method (FDM) and stochastic method, respectively. The acceleration time histories obtained from the both ways and their response spectra are compared. The result demonstrates that the former is adequate to simulate the low-frequency seismic wave; the latter is adequate to simulate the high-frequency seismic wave. Moreover, the result obtained from FDM can better reflect basin effects.
基金supported by the National Natural Science Foundation of China(No.42174161,No.41974123)China Postdoctoral Science Foundation(No.2022M711004)+1 种基金China National Petroleum Corporation Exploration and Development Research Institute Open Fund(No.822102016)the Jiangsu Province Science Fund for Distinguished Young Scholars(No.BK20200021).
文摘频域有限差分(finite difference frequency domain,FDFD)方法是地震波场模拟的常用方法,FDFD地震波场模拟的关键之一是构造能有效压制数值频散的FDFD系数。在已有的构造地震波场模拟FDFD系数的方法中,随一个网格内的波长个数变化的自适应FDFD系数可以最大程度地压制数值频散。目前计算自适应FDFD系数的方法涉及角度积分、共轭梯度优化、顺序初值选取、光滑正则化等问题,不仅较难实现而且计算效率较低。为了简化自适应FDFD系数的计算并提高相应计算效率,本文提出一种新的计算自适应FDFD系数的方法。所提方法首先将不同离散传播角度的平面波解代入FDFD格式,构造相应的最小二乘问题。由于该最小二乘问题较为病态,常规的基于正规方程组的求解方法难以得到光滑的自适应FDFD系数,本文提出通过QR矩阵分解求解相应超定线性方程组来求解该最小二乘问题。相比已有的基于角度积分、共轭梯度优化、顺序初值选取的计算自适应FDFD系数的方法,所提方法在可以得到光滑自适应FDFD系数的基础上,不仅计算过程更简洁,且计算效率明显提高。数值波场模拟结果表明,基于QR矩阵分解的自适应系数FDFD方法可以达到与基于角度积分、共轭梯度优化、顺序初值选取的自适应系数FDFD方法相同的精度,同时所需的计算时间更少。