Multi-orifice cross-flow jet mixers(MOCJMs)are used in various industrial applications due to their excellent mixing efficiency,but few studies have focused on the micromixing performance of MOCJMs.Herein,the flow cha...Multi-orifice cross-flow jet mixers(MOCJMs)are used in various industrial applications due to their excellent mixing efficiency,but few studies have focused on the micromixing performance of MOCJMs.Herein,the flow characteristics and micromixing performance inside the MOCJM were investigated using experiments and computational fluid dynamics(CFD)simulations based on the Villermaux/Dushman system and the finite-rate/modified eddy-dissipation model.The optimal A value was correlated with the characteristic parameters of MOCJMs to develop a CFD calculation method applicable to the study of the micromixing performance of the MOCJMs.Then the micromixing efficiency was evaluated using the segregation index XS,and the effects of operational and geometric parameters such as mixing flow Reynolds number(ReM),flow ratio(RF),total jet area(ST),the number of jet orifices(n),and outlet configuration on the micromixing efficiency were investigated.It was found that the intensive turbulent region generated by interactions between jets,as well as between jets and crossflows,facilitated rapid reactions.XS decreased with increasing ReM and decreasing RF.Furthermore,MOCJMs with lower ST,four jet orifices,and the narrower outlet configuration demonstrated a better micromixing efficiency.This study contributes to a deeper understanding of the micromixing performance of MOCJMs and provides valuable guidance for their design,optimization,and industrial application.展开更多
Microchannel reactors are widely used in different fields due to their intensive micromixing and, thus, high masstransfer efficiency. In this work, a single countercurrent-flow microchannel reactor(S-CFMCR) at the siz...Microchannel reactors are widely used in different fields due to their intensive micromixing and, thus, high masstransfer efficiency. In this work, a single countercurrent-flow microchannel reactor(S-CFMCR) at the size of ~1 mm was developed by steel micro-capillary and laser drilling technology. Utilizing the Villermaux/Dushman parallel competing reaction, numerical and experimental studies were carried out to investigate the micromixing performance(expressed as the segregation index XS) of liquids inside S-CFMCR at the low flow velocity regime.The effects of various operating conditions and design parameters of S-CFMCR, e.g., inlet Reynolds number(Re),volumetric flow ratio(R), inlet diameter(d) and outlet length(L), on the quality of micromixing were studied qualitatively. It was found that the micromixing efficiency was enhanced with increasing Re, but weakened with the increase of R. Moreover, d and L also have a significant influence on micromixing. CFD results were in good agreement with experimental data. In addition, the visualization of velocity magnitude, turbulent kinetic energy and concentration distributions of various ions inside S-CFMCR was illustrated as well. Based on the incorporation model, the estimated minimum micromixing time tmof S-CFMCR is ~2 × 10-4s.展开更多
A two-stage micro-impinging stream reactor(TS-MISR) that combined a first pre-mixing stage with a second micro-impinging stream reacting stage for continuous multi-component reacting systems has been built from commer...A two-stage micro-impinging stream reactor(TS-MISR) that combined a first pre-mixing stage with a second micro-impinging stream reacting stage for continuous multi-component reacting systems has been built from commercial T-junctions and steel micro-capillaries. Both of operating parameters and reactor configurations,such as jet Reynolds number(Rej), volumetric flow ratio(R), the first-stage junction angle(φ), the connecting capillary length(Lc) and connecting capillary diameter(dc), had significant effects on the micromixing efficiency of the reactor. Such effects were investigated for both of the two stage structures, respectively, by experimental and CFD methods and were optimized for the best micromixing performance. Intensified micromixing among at least three reacting components can be achieved in a continuous mode by using TS-MISR; therefore, it is expected that the TS-MISR will produce products of higher quality with more uniform and stable element distribution.展开更多
Semi-batch operated reaction processes are necessary for some competitive reaction systems to achieve a desirable process selectivity and productivity of fine chemical products.Herein the structural and operating para...Semi-batch operated reaction processes are necessary for some competitive reaction systems to achieve a desirable process selectivity and productivity of fine chemical products.Herein the structural and operating parameters of the teethed high shear mixers were adjusted to study the micromixing performance in the semi-batch operated system,using the Villermaux/Dushman reaction system.The results indicate that the rising of the rotor speed and the number of rotor teeth,the decrease of the width of the shear gap and the radial distance between the feed position and the inner wall of stator can enhance the micromixing level and lead to the decrease of the segregation index.Additionally,computational fluid dynamics calculations were carried out to disclose the evolution of the flow pattern and turbulent energy dissipation rate of the semi-batch operated high shear mixer.Furthermore,the correlation was established with a mean relative error of 8.05%and R^(2)of 0.955 to fit the segregation index and the parameters studied in this work,which can provide valuable guidance on the design and optimization of the semi-batch operated high shear mixers in practical applications.展开更多
基金the financial support from the Shanghai Sailing Program,China(21YF1409500)the National Natural Science Foundation of China(22308100,22308105)+1 种基金the State Key Laboratory of Chemical Engineering(SKL-ChE-23Z01)the National Science Fund for Distinguished Young Scholars of China(22225804).
文摘Multi-orifice cross-flow jet mixers(MOCJMs)are used in various industrial applications due to their excellent mixing efficiency,but few studies have focused on the micromixing performance of MOCJMs.Herein,the flow characteristics and micromixing performance inside the MOCJM were investigated using experiments and computational fluid dynamics(CFD)simulations based on the Villermaux/Dushman system and the finite-rate/modified eddy-dissipation model.The optimal A value was correlated with the characteristic parameters of MOCJMs to develop a CFD calculation method applicable to the study of the micromixing performance of the MOCJMs.Then the micromixing efficiency was evaluated using the segregation index XS,and the effects of operational and geometric parameters such as mixing flow Reynolds number(ReM),flow ratio(RF),total jet area(ST),the number of jet orifices(n),and outlet configuration on the micromixing efficiency were investigated.It was found that the intensive turbulent region generated by interactions between jets,as well as between jets and crossflows,facilitated rapid reactions.XS decreased with increasing ReM and decreasing RF.Furthermore,MOCJMs with lower ST,four jet orifices,and the narrower outlet configuration demonstrated a better micromixing efficiency.This study contributes to a deeper understanding of the micromixing performance of MOCJMs and provides valuable guidance for their design,optimization,and industrial application.
基金Supported by the National Natural Science Foundation of China(21576012)the National Key Research and Development Program of China(2017YFB0307202)
文摘Microchannel reactors are widely used in different fields due to their intensive micromixing and, thus, high masstransfer efficiency. In this work, a single countercurrent-flow microchannel reactor(S-CFMCR) at the size of ~1 mm was developed by steel micro-capillary and laser drilling technology. Utilizing the Villermaux/Dushman parallel competing reaction, numerical and experimental studies were carried out to investigate the micromixing performance(expressed as the segregation index XS) of liquids inside S-CFMCR at the low flow velocity regime.The effects of various operating conditions and design parameters of S-CFMCR, e.g., inlet Reynolds number(Re),volumetric flow ratio(R), inlet diameter(d) and outlet length(L), on the quality of micromixing were studied qualitatively. It was found that the micromixing efficiency was enhanced with increasing Re, but weakened with the increase of R. Moreover, d and L also have a significant influence on micromixing. CFD results were in good agreement with experimental data. In addition, the visualization of velocity magnitude, turbulent kinetic energy and concentration distributions of various ions inside S-CFMCR was illustrated as well. Based on the incorporation model, the estimated minimum micromixing time tmof S-CFMCR is ~2 × 10-4s.
基金Supported by the National Natural Science Foundation of China(Nos.21376015,21576012 and 91334206)
文摘A two-stage micro-impinging stream reactor(TS-MISR) that combined a first pre-mixing stage with a second micro-impinging stream reacting stage for continuous multi-component reacting systems has been built from commercial T-junctions and steel micro-capillaries. Both of operating parameters and reactor configurations,such as jet Reynolds number(Rej), volumetric flow ratio(R), the first-stage junction angle(φ), the connecting capillary length(Lc) and connecting capillary diameter(dc), had significant effects on the micromixing efficiency of the reactor. Such effects were investigated for both of the two stage structures, respectively, by experimental and CFD methods and were optimized for the best micromixing performance. Intensified micromixing among at least three reacting components can be achieved in a continuous mode by using TS-MISR; therefore, it is expected that the TS-MISR will produce products of higher quality with more uniform and stable element distribution.
基金supported by the National Natural Science Foundation of China(Grant Nos.22090034,U20A20151,21776179)Chemistry and Chemical Engineering Guangdong Laboratory(Grant No.1922015).
文摘Semi-batch operated reaction processes are necessary for some competitive reaction systems to achieve a desirable process selectivity and productivity of fine chemical products.Herein the structural and operating parameters of the teethed high shear mixers were adjusted to study the micromixing performance in the semi-batch operated system,using the Villermaux/Dushman reaction system.The results indicate that the rising of the rotor speed and the number of rotor teeth,the decrease of the width of the shear gap and the radial distance between the feed position and the inner wall of stator can enhance the micromixing level and lead to the decrease of the segregation index.Additionally,computational fluid dynamics calculations were carried out to disclose the evolution of the flow pattern and turbulent energy dissipation rate of the semi-batch operated high shear mixer.Furthermore,the correlation was established with a mean relative error of 8.05%and R^(2)of 0.955 to fit the segregation index and the parameters studied in this work,which can provide valuable guidance on the design and optimization of the semi-batch operated high shear mixers in practical applications.