Photocatalytic hydrogen(H_(2))evolution using covalent organic frameworks(COFs)is an attractive and promising avenue for exploration,but one of its big challenges is low photo-induced charge separation.In this study,w...Photocatalytic hydrogen(H_(2))evolution using covalent organic frameworks(COFs)is an attractive and promising avenue for exploration,but one of its big challenges is low photo-induced charge separation.In this study,we present a straightforward and facile dipole polarization engineering strategy to enhance charge separation efficiency,achieved through atomic modulation(O,S,and Se)of the COF monomer.Our findings demonstrate that incorporating atoms with varying electronegativities into the COF matrix significantly influences the local dipole moment,thereby affecting charge separation efficiency and photostability,which in turn affects the rates of photocatalytic H_(2) evolution.As a result,the newly developed TMT-BO-COF,which contains highly electronegative O atoms,exhibits the lowest exciton binding energy,the highest efficiency in charge separation and transportation,and the longest lifetime of the active charges.This leads to an impressive average H_(2) production rate of 23.7 mmol g^(−1) h^(−1),which is 2.5 and 24.5 times higher than that of TMT-BS-COF(containing S atoms)and TMT-BSe-COF(containing Se atoms),respectively.A novel photocatalytic hydrogen evolution mechanism based on proton-coupled electron transfer on N in the structure of triazine rings in vinylene-linked COFs is proposed by theoretical calculations.Our findings provide new insights into the design of highly photoactive organic framework materials for H_(2) evolution and beyond.展开更多
Effects of film-forming additive on stability of electrode and cycling performance of LiFePO4/graphite cell at elevated temperature were studied. Two 18650 cells with and without VC additive were investigated by galva...Effects of film-forming additive on stability of electrode and cycling performance of LiFePO4/graphite cell at elevated temperature were studied. Two 18650 cells with and without VC additive were investigated by galvanostatic cycling, electrochemical impedance spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis and Raman spectroscopy. The results show that in the presence of VC additive, dissolution of Fe from LiFePO4 material is greatly depressed and stability of graphite structure is improved; the additive can not only reduce reaction of electrolyte on surface of LiFePO4 electrode but also suppress reduction of solvent and thickening of the solid electrolyte interface (SEI) layer on graphite surface. Electrolyte with VC is considered to be a good candidate for improving cycling performance of the LiFePOa/graphite cell at elevated temperature.展开更多
Application of sodium-ion batteries is suppressed due to the lack of appropriate electrolytes matching cathode and anode simultaneously.Ether-based electrolytes,preference of anode materials,cannot match with high-pot...Application of sodium-ion batteries is suppressed due to the lack of appropriate electrolytes matching cathode and anode simultaneously.Ether-based electrolytes,preference of anode materials,cannot match with high-potential cathodes failing to apply in full cells.Herein,vinylene carbonate(VC)as an additive into NaCF_(3) SO_(3)-Diglyme(DGM)could make sodium-ion full cells applicable without preactivation of cathode and anode.The assembled FeS@C||Na3 V2(PO_(4))_(3)@C full cell with this electrolyte exhibits long term cycling stability and high capacity retention.The deduced reason is additive VC,whose HOMO level value is close to that of DGM,not only change the solvent sheath structure of Na^(+),but also is synergistically oxidized with DGM to form integrity and consecutive cathode electrolyte interphase on Na3 V2(PO_(4))_(3)@C cathode,which could effectively improve the oxidative stability of electrolyte and prevent the electrolyte decomposition.This work displays a new way to optimize the sodium-ion full cell seasily with bright practical application potential.展开更多
It was found that traces of water in the reaction medium would result in a great increase of gel and a decrease of Molecular weight of the poly(2-methoxy,5-(2'-ethylhexyloxy)-1,4-phenylene vinylene) during the pol...It was found that traces of water in the reaction medium would result in a great increase of gel and a decrease of Molecular weight of the poly(2-methoxy,5-(2'-ethylhexyloxy)-1,4-phenylene vinylene) during the polymerization, which ultimately led to inferior film qualities and device properties. The device (ITO/PEDOT/MEH-PPV/Ba/Al) with MEH-PPV prepared under dry conditions has an external quantum efficiency of above 2.0%.展开更多
Ionic liquids have been paid much attention and are considered to replace the conventional organic electrolyte and solve the safety issues by virtue of nonvolatility,non-flammability,high ionic conductivity and extend...Ionic liquids have been paid much attention and are considered to replace the conventional organic electrolyte and solve the safety issues by virtue of nonvolatility,non-flammability,high ionic conductivity and extended electrochemical steady window.The paper introduces ionic liquids electrolyte on basis of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMITFSI),which shows a wide electrochemical window (0.5-4.5 V vs.Li+/Li),and is theoretically feasible as an electrolyte for Li/LiFePO4batteries to improve the safety.Linear sweep voltammetry (LSV) was performed to investigate the electrochemical stability window of the polymer electrolyte.Interfacial resistance for Li/electrolyte/Li symmetric cells and Li/electrolyte/LiFePO4 cells were studied by electrochemical impedance spectroscopy (EIS).The results showed that additive vinylene carbonate (VC) enhances the formation of solid electrolyte interphase film to protect lithium anodes from corrosion and improves the compatibility of ionic liquid electrolyte towards lithium anodes.Accordingly,Li/LiFePO4cells delivers the initial discharge capacity of 124 mAh g-1 at a current rate of 0.1C in the ionic liquid electrolyte (EMITFSI+0.8 mol L-1LiTFSI+5 wt%VC),and shows better cyclability than in the ionic liquid electrolyte without VC.展开更多
The surface conductivity of poly [ 2-methoxy-5-(3'-methyl) butoxy]-p-phenylene vinylene (PMOMBOPV) films doped with FeCl3 and H2SO4 by chemical method and implanted by N^+ ions was studied and the comparison of ...The surface conductivity of poly [ 2-methoxy-5-(3'-methyl) butoxy]-p-phenylene vinylene (PMOMBOPV) films doped with FeCl3 and H2SO4 by chemical method and implanted by N^+ ions was studied and the comparison of environmental stability of conductive behavior was also investigated. The energy and dose of N^+ ions were in the rang 15~35 keV and 3. 8×10^15~9. 6×10^16 ions/cm^2, respectively. The conductivity of PMOMBOPV film was enhanced remarkably with the increases of the energy and dose of N^+ ions. For example, the conductivity of PMOMBOPV film was 3. 2×10^-2S/cm when ion implantation was performed with an energy of 35 keV at a dose of 9. 6 × 10^14 ions/cm^2 , which was almost seven orders of magnitude higher than that of film unimplanted. The environmental stability of conductive behavior for ionimplanted film was much better than that of chemical doped films. Moreover, the conductive activation energy of ion-implanted films was measured to be about 0.17 eV.展开更多
Methacrylic acid first was neutralized with an aqueous solution of NaOH to pH = 6.0 similar to 7.0, vinylene carbonate (VCA) was added to the solution, then monomers were copolymerized in paraffin oil by means of reve...Methacrylic acid first was neutralized with an aqueous solution of NaOH to pH = 6.0 similar to 7.0, vinylene carbonate (VCA) was added to the solution, then monomers were copolymerized in paraffin oil by means of reverse-phase suspension polymerization and hydrophilic copolymeric supports were prepared. The properties of the supports were determined using trypsin and results show that the amount of enzymes coupled to the supports and the specific activity of immobilized trypsin are related to the content of VCA structure units, reaction time and concentration of enzyme solution, etc.展开更多
Bulk polymerization of vinylene carbonate using t-butylperoxypivalate at 40℃gave colourless, high molecular weight poly(vinylene carbonate) (PVCA). Solutions of PVCA in acetone and DMF are not stable at 25℃and this ...Bulk polymerization of vinylene carbonate using t-butylperoxypivalate at 40℃gave colourless, high molecular weight poly(vinylene carbonate) (PVCA). Solutions of PVCA in acetone and DMF are not stable at 25℃and this degradation was studied. From measurements in DMF with unfractionated PVCA a Mark-Houwink equation was obtained:展开更多
Among various perylenediimide(PDI)-based small molecular non-fullerene acceptors(NFAs),PDI dimer can effectively avoid the excessive aggregation of single PDI and improve the photovoltaic performance.However,the twist...Among various perylenediimide(PDI)-based small molecular non-fullerene acceptors(NFAs),PDI dimer can effectively avoid the excessive aggregation of single PDI and improve the photovoltaic performance.However,the twist of perylene core in PDI dimer will destroy the effective conjugation.Thus,ring annulation of PDI dimer is a feasible method to balance the film quality and electron transport,but the systematic study has attracted few attentions.Herein,we choose a simple vinylene linked PDI dimer,V-PDI2,and then conduct further studies on the structure-property-performance relationship of four kinds of derived fused-PDI dimers,namely V-TDI2,V-FDI2,V-PDIS2 and V-PDISe2 respectively.The former two are incorporated thianaphthene and benzofuran at the inside bay positions,and the latter two are fused thiophene and selenophene at the outside bay positions,respectively.Theoretical calculations reveal the inside-and outside-fused structures largely affect the skeleton configuration,the former two tend to be planar structure and the latter two maintain the distorted backbone.The photovoltaic characterizations show that the inside-fused PDI dimers offer high open circuit voltage(VOC),while the outside-fused PDI dimers afford large short-circuit current density(JSC).This variation tendency results from the reasonably tunable energy levels,light absorption,molecular crystallinity and film morphology.As a result,PBDB-T:V-PDISe2 device exhibits the highest power conversion efficiency(PCE)of 6.51%,and PBDB-T:VFDI2 device realizes the highest VOC of 1.00 V.This contribution indicates that annulation of PDI dimers in outside or inside bay regions is a feasible method to modulate the properties of PDI-based non-fullerene acceptors.展开更多
Soluble poly(3-hexyl-2,5-thienylene vinylene) (PHTV) was readily synthesized from thiophene in a yield better than that of the precursor method to prepare poly(thienylene vinylene) (PTV). The bandgap of the polymer is...Soluble poly(3-hexyl-2,5-thienylene vinylene) (PHTV) was readily synthesized from thiophene in a yield better than that of the precursor method to prepare poly(thienylene vinylene) (PTV). The bandgap of the polymer is about 1.8 eV, which is comparable with that of PTV. Owing to the introduction of alkyl side groups onto the backbone of the polymer, it can be dissolved in common organic solvents such as chloroform, THF and toluene. The synthesis of soluble PHTV is a very important approach to preventing oxidation and to improving the properties and the processbility of the PTV. The existence of alkyl side groups in PHTV does not affect its, bandgap and thermal properties as compared with PTV. After doping with FeCl3, the conductivity of PHTV is as high as 1.1 x 10(-2) S/cm. The soluble PHTV can be easily transformed into thin film with much better quality than that of the PTV film prepared by the traditional precursor method, which is very important for fabricating devices with good properties.展开更多
We have synthesized two photovoltaic molecules(HEX-3TVT-ID and EH-3TVT-ID) based on vinylenebridged oligothiophene applied as donor for the solution-processable bulk-heterojunction organic solar cells(OSCs). Vinyl...We have synthesized two photovoltaic molecules(HEX-3TVT-ID and EH-3TVT-ID) based on vinylenebridged oligothiophene applied as donor for the solution-processable bulk-heterojunction organic solar cells(OSCs). Vinylene unit was introduced as π-bridge in the oligothiophenes with 1,3-indenedione as end group and 4,4’-dihexyl-2,2’:5’,2’-terthiophene or 3’,4’-di(octan-3-yl)-2,2’:5’,2’-terthiophene as core,respectively. Due to the different substituent positions of the alkyl group relative to the vinylene unit in the terthiophene, HEX-3TVT-ID and EH-3TVT-ID show different optical and electrochemical properties, corresponding to the photovoltaic performance of the OSCs devices. The power conversion efficiency(PCE) of the OSCs based on a blend of HEX-3TVT-ID and PC71BM(1:0.8, weight ratio, 0.5% CN) reached 2.3%. In comparison, the OSCs based on the blend of EH-3TVT-ID and PC71BM in the weight ratio of 1:1 without the additive show a higher PCE of 2.7%, with a typically high VOC of 0.93 V, under the illumination of AM 1.5, 100 mW cm-2.展开更多
We report the electrosynthesis of a novel semiconductor polymer based on alkyl vinylthiophene derivative in the presence of an ionic liquid (IL). The polymerization was performed under galvanostatic conditions and the...We report the electrosynthesis of a novel semiconductor polymer based on alkyl vinylthiophene derivative in the presence of an ionic liquid (IL). The polymerization was performed under galvanostatic conditions and the polymer was studied as potential donor component of a multilayer heterojunction organic solar cell (OSC). The monomer used was (E)-1,2-di-(3-octyl-2-thienyl) vinylene (OTV) and the IL used for the electropolymerization was 1-octyl-3-methylimidazole hexafluorophosphate C8mimPF6. Optical properties, stability and morphology of the polymer were analyzed using FT-IR, UV-vis, Raman and XPS spectroscopy. Voltammetry analysis and scanning electron microscopy (SEM-EDX) were also performed on the polymer. The OSC assembled with the polymer of OTV was used as electro donor and C60 as acceptor. Molybdenum trioxide (MoO3) and bathocuproine (BCP) were used as buffer layer between anode and cathode respectively. I-V curves, in the dark and under AM 1.5 solar simulator were performed to measure its efficiency.展开更多
A series of soluble poly(p-phenylene vinylene) (PPV) derivatives were synthesized through dehydrochlorination with the p-metaoxy phenol as starting materials. The electronic characteristics of PPV derivatives were stu...A series of soluble poly(p-phenylene vinylene) (PPV) derivatives were synthesized through dehydrochlorination with the p-metaoxy phenol as starting materials. The electronic characteristics of PPV derivatives were studied.展开更多
A series of symmetrical and unsymmetrical phenylene-vinylene (PV) based chro- mophores with the molecular configuration of donor-π-donor (D-g-D) were prepared and characterized. Iodine was first introduced into t...A series of symmetrical and unsymmetrical phenylene-vinylene (PV) based chro- mophores with the molecular configuration of donor-π-donor (D-g-D) were prepared and characterized. Iodine was first introduced into the Jr-conjugation backbone of the PV based chromophores in order to study the heavy atom effect on their linear absorption, two-photon absorption (TPA) properties, as well as singlet oxygen generation properties. TPA cross-sections of these chromophores were investigated by using the two-photon excited fluorescence method. The unsymmetrical chromophores were found to have larger TPA cross-section values compared to their symmetrical counterparts. For one of the unsymmetrical chromophores with the iodine incorporation, a large TPA cross section value with quenched emission was found. The decreased fluorescence quantum yield of a molecule can be ascribed to the increased intersystem crossing, which is favorable for enhancing the singlet oxygen generation. Therefore, the unsymmetrical PV based chromophores with heavy atom incorporation are promising singlet oxygen sensitizers for the photodynamic therapy application.展开更多
In this study, the conjugated polymer, poly(1-methoxy-4-octyloxy)-para-phenylene vinylene (MO-p-PPV) was synthesized and characterized. MO-p-PPV was synthesized according to Gilch polymerization mechanism by using 4-m...In this study, the conjugated polymer, poly(1-methoxy-4-octyloxy)-para-phenylene vinylene (MO-p-PPV) was synthesized and characterized. MO-p-PPV was synthesized according to Gilch polymerization mechanism by using 4-methoxyphenol as starting material in the presence of potassium tert-butoxide (1M in THF). The product was further purified by multiple precipitations in different solvents such as methanol, tetrahydrofuran, isopropyl alcohol and hexane. The final product was dried to afford MO-p-PPV as a red solid. The resulting polymer was completely soluble in common organic solvents. The structure of monomer and optical properties of polymer were characterized by proton nuclear magnetic resonance (1H-NMR) spectroscopy, UV-vis spectroscopy, and fluorescence spectroscopy. The UV-vis spectrum showed absorption maxima for MO-p-PPV at 491 nm. Similarly, fluorescence spectrum showed λmax emission at 540 nm.展开更多
The incorporation of mechanophores,motifs that transform mechanical stimulus into chemical reaction or optical variation,allows creating materials with stressresponsive properties.The most widely used mechanophore gen...The incorporation of mechanophores,motifs that transform mechanical stimulus into chemical reaction or optical variation,allows creating materials with stressresponsive properties.The most widely used mechanophore generally features a weak bond,but its cleavage is typical an irreversible process.Here,we showed that this problem can be solved by folding–unfolding of a molecular tweezer.We systematically studied the mechanochromic properties of polyurethanes with cyano-substituted oligo(p-phenylene)vinylene(COP)tweezer(DPU).As a control experiment,a class of polyurethanes containing only a single COP moiety(MPU)was also prepared.The DPU showed prominent mechanochromic properties,due to the intramolecular folding–unfolding of COP tweezer under mechanical stimulus.The process was efficient,reversible and optical detectable.However,due to the disability to form either intramolecular folding or intermolecular aggregation,the MPU sample was mechanical inert.展开更多
文摘Photocatalytic hydrogen(H_(2))evolution using covalent organic frameworks(COFs)is an attractive and promising avenue for exploration,but one of its big challenges is low photo-induced charge separation.In this study,we present a straightforward and facile dipole polarization engineering strategy to enhance charge separation efficiency,achieved through atomic modulation(O,S,and Se)of the COF monomer.Our findings demonstrate that incorporating atoms with varying electronegativities into the COF matrix significantly influences the local dipole moment,thereby affecting charge separation efficiency and photostability,which in turn affects the rates of photocatalytic H_(2) evolution.As a result,the newly developed TMT-BO-COF,which contains highly electronegative O atoms,exhibits the lowest exciton binding energy,the highest efficiency in charge separation and transportation,and the longest lifetime of the active charges.This leads to an impressive average H_(2) production rate of 23.7 mmol g^(−1) h^(−1),which is 2.5 and 24.5 times higher than that of TMT-BS-COF(containing S atoms)and TMT-BSe-COF(containing Se atoms),respectively.A novel photocatalytic hydrogen evolution mechanism based on proton-coupled electron transfer on N in the structure of triazine rings in vinylene-linked COFs is proposed by theoretical calculations.Our findings provide new insights into the design of highly photoactive organic framework materials for H_(2) evolution and beyond.
基金Project(2007BAE12B01)supported by the National Key Technology Research and Development Program of ChinaProject(20803095)supported by the National Natural Science Foundation of China
文摘Effects of film-forming additive on stability of electrode and cycling performance of LiFePO4/graphite cell at elevated temperature were studied. Two 18650 cells with and without VC additive were investigated by galvanostatic cycling, electrochemical impedance spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis and Raman spectroscopy. The results show that in the presence of VC additive, dissolution of Fe from LiFePO4 material is greatly depressed and stability of graphite structure is improved; the additive can not only reduce reaction of electrolyte on surface of LiFePO4 electrode but also suppress reduction of solvent and thickening of the solid electrolyte interface (SEI) layer on graphite surface. Electrolyte with VC is considered to be a good candidate for improving cycling performance of the LiFePOa/graphite cell at elevated temperature.
基金supported by the National Natural Science Foundation of China(Nos.U1804129,21771164,21671205,U1804126)Zhongyuan Youth Talent Support Program of Henan ProvinceZhengzhou University Youth Innovation Program。
文摘Application of sodium-ion batteries is suppressed due to the lack of appropriate electrolytes matching cathode and anode simultaneously.Ether-based electrolytes,preference of anode materials,cannot match with high-potential cathodes failing to apply in full cells.Herein,vinylene carbonate(VC)as an additive into NaCF_(3) SO_(3)-Diglyme(DGM)could make sodium-ion full cells applicable without preactivation of cathode and anode.The assembled FeS@C||Na3 V2(PO_(4))_(3)@C full cell with this electrolyte exhibits long term cycling stability and high capacity retention.The deduced reason is additive VC,whose HOMO level value is close to that of DGM,not only change the solvent sheath structure of Na^(+),but also is synergistically oxidized with DGM to form integrity and consecutive cathode electrolyte interphase on Na3 V2(PO_(4))_(3)@C cathode,which could effectively improve the oxidative stability of electrolyte and prevent the electrolyte decomposition.This work displays a new way to optimize the sodium-ion full cell seasily with bright practical application potential.
基金This work were supported by the National Natural Science Foundation of China (Project No29992530-6) and the Natural Science Foundation of Guangdong Province (Grant No. 990623).
文摘It was found that traces of water in the reaction medium would result in a great increase of gel and a decrease of Molecular weight of the poly(2-methoxy,5-(2'-ethylhexyloxy)-1,4-phenylene vinylene) during the polymerization, which ultimately led to inferior film qualities and device properties. The device (ITO/PEDOT/MEH-PPV/Ba/Al) with MEH-PPV prepared under dry conditions has an external quantum efficiency of above 2.0%.
基金Sponsored by the Natural Science Foundation of Heilongjiang Province of China (Grant No.B2007-05)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (Grant No.HIT.NSRIF.2009121)
文摘Ionic liquids have been paid much attention and are considered to replace the conventional organic electrolyte and solve the safety issues by virtue of nonvolatility,non-flammability,high ionic conductivity and extended electrochemical steady window.The paper introduces ionic liquids electrolyte on basis of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMITFSI),which shows a wide electrochemical window (0.5-4.5 V vs.Li+/Li),and is theoretically feasible as an electrolyte for Li/LiFePO4batteries to improve the safety.Linear sweep voltammetry (LSV) was performed to investigate the electrochemical stability window of the polymer electrolyte.Interfacial resistance for Li/electrolyte/Li symmetric cells and Li/electrolyte/LiFePO4 cells were studied by electrochemical impedance spectroscopy (EIS).The results showed that additive vinylene carbonate (VC) enhances the formation of solid electrolyte interphase film to protect lithium anodes from corrosion and improves the compatibility of ionic liquid electrolyte towards lithium anodes.Accordingly,Li/LiFePO4cells delivers the initial discharge capacity of 124 mAh g-1 at a current rate of 0.1C in the ionic liquid electrolyte (EMITFSI+0.8 mol L-1LiTFSI+5 wt%VC),and shows better cyclability than in the ionic liquid electrolyte without VC.
基金National Natural Science Foundation of China (60277002) Scientific Research Foundation of Xi’an JiaotongUniversity
文摘The surface conductivity of poly [ 2-methoxy-5-(3'-methyl) butoxy]-p-phenylene vinylene (PMOMBOPV) films doped with FeCl3 and H2SO4 by chemical method and implanted by N^+ ions was studied and the comparison of environmental stability of conductive behavior was also investigated. The energy and dose of N^+ ions were in the rang 15~35 keV and 3. 8×10^15~9. 6×10^16 ions/cm^2, respectively. The conductivity of PMOMBOPV film was enhanced remarkably with the increases of the energy and dose of N^+ ions. For example, the conductivity of PMOMBOPV film was 3. 2×10^-2S/cm when ion implantation was performed with an energy of 35 keV at a dose of 9. 6 × 10^14 ions/cm^2 , which was almost seven orders of magnitude higher than that of film unimplanted. The environmental stability of conductive behavior for ionimplanted film was much better than that of chemical doped films. Moreover, the conductive activation energy of ion-implanted films was measured to be about 0.17 eV.
文摘Methacrylic acid first was neutralized with an aqueous solution of NaOH to pH = 6.0 similar to 7.0, vinylene carbonate (VCA) was added to the solution, then monomers were copolymerized in paraffin oil by means of reverse-phase suspension polymerization and hydrophilic copolymeric supports were prepared. The properties of the supports were determined using trypsin and results show that the amount of enzymes coupled to the supports and the specific activity of immobilized trypsin are related to the content of VCA structure units, reaction time and concentration of enzyme solution, etc.
文摘Bulk polymerization of vinylene carbonate using t-butylperoxypivalate at 40℃gave colourless, high molecular weight poly(vinylene carbonate) (PVCA). Solutions of PVCA in acetone and DMF are not stable at 25℃and this degradation was studied. From measurements in DMF with unfractionated PVCA a Mark-Houwink equation was obtained:
基金supported by the National Key Research and Development Program of China (2017YFA0206600)the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDB-SSW-SLH033)the National Natural Science Foundation of China (NSFC, Nos. 51473040, 51673048, 21875052, 51673092)
文摘Among various perylenediimide(PDI)-based small molecular non-fullerene acceptors(NFAs),PDI dimer can effectively avoid the excessive aggregation of single PDI and improve the photovoltaic performance.However,the twist of perylene core in PDI dimer will destroy the effective conjugation.Thus,ring annulation of PDI dimer is a feasible method to balance the film quality and electron transport,but the systematic study has attracted few attentions.Herein,we choose a simple vinylene linked PDI dimer,V-PDI2,and then conduct further studies on the structure-property-performance relationship of four kinds of derived fused-PDI dimers,namely V-TDI2,V-FDI2,V-PDIS2 and V-PDISe2 respectively.The former two are incorporated thianaphthene and benzofuran at the inside bay positions,and the latter two are fused thiophene and selenophene at the outside bay positions,respectively.Theoretical calculations reveal the inside-and outside-fused structures largely affect the skeleton configuration,the former two tend to be planar structure and the latter two maintain the distorted backbone.The photovoltaic characterizations show that the inside-fused PDI dimers offer high open circuit voltage(VOC),while the outside-fused PDI dimers afford large short-circuit current density(JSC).This variation tendency results from the reasonably tunable energy levels,light absorption,molecular crystallinity and film morphology.As a result,PBDB-T:V-PDISe2 device exhibits the highest power conversion efficiency(PCE)of 6.51%,and PBDB-T:VFDI2 device realizes the highest VOC of 1.00 V.This contribution indicates that annulation of PDI dimers in outside or inside bay regions is a feasible method to modulate the properties of PDI-based non-fullerene acceptors.
基金This work was supported by the Chinese Academy of Sciences (No. KJCX2-H1).
文摘Soluble poly(3-hexyl-2,5-thienylene vinylene) (PHTV) was readily synthesized from thiophene in a yield better than that of the precursor method to prepare poly(thienylene vinylene) (PTV). The bandgap of the polymer is about 1.8 eV, which is comparable with that of PTV. Owing to the introduction of alkyl side groups onto the backbone of the polymer, it can be dissolved in common organic solvents such as chloroform, THF and toluene. The synthesis of soluble PHTV is a very important approach to preventing oxidation and to improving the properties and the processbility of the PTV. The existence of alkyl side groups in PHTV does not affect its, bandgap and thermal properties as compared with PTV. After doping with FeCl3, the conductivity of PHTV is as high as 1.1 x 10(-2) S/cm. The soluble PHTV can be easily transformed into thin film with much better quality than that of the PTV film prepared by the traditional precursor method, which is very important for fabricating devices with good properties.
基金supported by the National Natural Science Foundation of China (51272033, 51572037, 51603021)333 Project of Jiangsu Province (BRA2017353)the Priority Academic Program Development of Jiangsu Higher Education Institutions and Anhui Provincial Natural Science Foundation (1608085QF156)
文摘We have synthesized two photovoltaic molecules(HEX-3TVT-ID and EH-3TVT-ID) based on vinylenebridged oligothiophene applied as donor for the solution-processable bulk-heterojunction organic solar cells(OSCs). Vinylene unit was introduced as π-bridge in the oligothiophenes with 1,3-indenedione as end group and 4,4’-dihexyl-2,2’:5’,2’-terthiophene or 3’,4’-di(octan-3-yl)-2,2’:5’,2’-terthiophene as core,respectively. Due to the different substituent positions of the alkyl group relative to the vinylene unit in the terthiophene, HEX-3TVT-ID and EH-3TVT-ID show different optical and electrochemical properties, corresponding to the photovoltaic performance of the OSCs devices. The power conversion efficiency(PCE) of the OSCs based on a blend of HEX-3TVT-ID and PC71BM(1:0.8, weight ratio, 0.5% CN) reached 2.3%. In comparison, the OSCs based on the blend of EH-3TVT-ID and PC71BM in the weight ratio of 1:1 without the additive show a higher PCE of 2.7%, with a typically high VOC of 0.93 V, under the illumination of AM 1.5, 100 mW cm-2.
文摘We report the electrosynthesis of a novel semiconductor polymer based on alkyl vinylthiophene derivative in the presence of an ionic liquid (IL). The polymerization was performed under galvanostatic conditions and the polymer was studied as potential donor component of a multilayer heterojunction organic solar cell (OSC). The monomer used was (E)-1,2-di-(3-octyl-2-thienyl) vinylene (OTV) and the IL used for the electropolymerization was 1-octyl-3-methylimidazole hexafluorophosphate C8mimPF6. Optical properties, stability and morphology of the polymer were analyzed using FT-IR, UV-vis, Raman and XPS spectroscopy. Voltammetry analysis and scanning electron microscopy (SEM-EDX) were also performed on the polymer. The OSC assembled with the polymer of OTV was used as electro donor and C60 as acceptor. Molybdenum trioxide (MoO3) and bathocuproine (BCP) were used as buffer layer between anode and cathode respectively. I-V curves, in the dark and under AM 1.5 solar simulator were performed to measure its efficiency.
文摘A series of soluble poly(p-phenylene vinylene) (PPV) derivatives were synthesized through dehydrochlorination with the p-metaoxy phenol as starting materials. The electronic characteristics of PPV derivatives were studied.
基金National Natural Science Foundation of China(21102144)in part supported by 100 Talents Programme of Chinese Academy of Sciences
文摘A series of symmetrical and unsymmetrical phenylene-vinylene (PV) based chro- mophores with the molecular configuration of donor-π-donor (D-g-D) were prepared and characterized. Iodine was first introduced into the Jr-conjugation backbone of the PV based chromophores in order to study the heavy atom effect on their linear absorption, two-photon absorption (TPA) properties, as well as singlet oxygen generation properties. TPA cross-sections of these chromophores were investigated by using the two-photon excited fluorescence method. The unsymmetrical chromophores were found to have larger TPA cross-section values compared to their symmetrical counterparts. For one of the unsymmetrical chromophores with the iodine incorporation, a large TPA cross section value with quenched emission was found. The decreased fluorescence quantum yield of a molecule can be ascribed to the increased intersystem crossing, which is favorable for enhancing the singlet oxygen generation. Therefore, the unsymmetrical PV based chromophores with heavy atom incorporation are promising singlet oxygen sensitizers for the photodynamic therapy application.
文摘In this study, the conjugated polymer, poly(1-methoxy-4-octyloxy)-para-phenylene vinylene (MO-p-PPV) was synthesized and characterized. MO-p-PPV was synthesized according to Gilch polymerization mechanism by using 4-methoxyphenol as starting material in the presence of potassium tert-butoxide (1M in THF). The product was further purified by multiple precipitations in different solvents such as methanol, tetrahydrofuran, isopropyl alcohol and hexane. The final product was dried to afford MO-p-PPV as a red solid. The resulting polymer was completely soluble in common organic solvents. The structure of monomer and optical properties of polymer were characterized by proton nuclear magnetic resonance (1H-NMR) spectroscopy, UV-vis spectroscopy, and fluorescence spectroscopy. The UV-vis spectrum showed absorption maxima for MO-p-PPV at 491 nm. Similarly, fluorescence spectrum showed λmax emission at 540 nm.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.52103141 and 51803090)the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20181025 and BK20191022)for financial support.
文摘The incorporation of mechanophores,motifs that transform mechanical stimulus into chemical reaction or optical variation,allows creating materials with stressresponsive properties.The most widely used mechanophore generally features a weak bond,but its cleavage is typical an irreversible process.Here,we showed that this problem can be solved by folding–unfolding of a molecular tweezer.We systematically studied the mechanochromic properties of polyurethanes with cyano-substituted oligo(p-phenylene)vinylene(COP)tweezer(DPU).As a control experiment,a class of polyurethanes containing only a single COP moiety(MPU)was also prepared.The DPU showed prominent mechanochromic properties,due to the intramolecular folding–unfolding of COP tweezer under mechanical stimulus.The process was efficient,reversible and optical detectable.However,due to the disability to form either intramolecular folding or intermolecular aggregation,the MPU sample was mechanical inert.