The potassium terbium polyphosphate crystal KTb(PO3)4 has been synthesized using a high temperature solution reaction method. The structure and composition were characterized by single-crystal X-ray diffraction, pow...The potassium terbium polyphosphate crystal KTb(PO3)4 has been synthesized using a high temperature solution reaction method. The structure and composition were characterized by single-crystal X-ray diffraction, powder X-ray diffraction and elemental analysis. The compound crystallizes in the monoclinic space group P21/n with a=10.3182(6), b=8.9129(5), c=10.7940(6) , β=105.993(1)o, V=954.3 3, Z=4, Mr=513.91, Dc=3.577 g/cm3, μ=8.585 mm(-1), F(000)=960, S=0.955,(Δρ)max=1.380,(Δρ)min=–3.428 e/3, the final R=0.0301 and w R=0.0400 for 2301 observed reflections with I 〉 2σ(I). In addition, pure powder of isostructural Rb Tb(PO3)4 was synthesized in order to investigate the optical property. Photoluminescence measurements show that both crystals ATb(PO3)4(A=K(1), Rb(2)) are promising candidates to become solid-state visible green light-emitting sources.展开更多
Recently,much attention has been paid to the lanthanide luminescent materials based on the visiblelight sensitization for their potential applications in the fields of bio-imaging and optical devices.In this work,the ...Recently,much attention has been paid to the lanthanide luminescent materials based on the visiblelight sensitization for their potential applications in the fields of bio-imaging and optical devices.In this work,the lanthanide complexes have been covalently bonded to the ordered mesoporous titania(OMT) matrix,and the resulting titania-based hybrid ordered mesoporous materials(named as LnDBOMT,Ln = Eu,Sm,Yb,Nd) were characterized by using Fourier-transform infrared(FT-IR) spectroscopy,small-angle X-ray powder diffraction(SAXD),N2 adsorption-desorption isotherms,transmission electron microscopy(TEM),fluorescence spectroscopy,and thermogravimetric analysis.Generally,exciting with visible light is advantageous over UV excitation.Of importance here is that,under excitation with visible light,the LnDB-OMT all show characteristic visible(Eu3+,Sm3+) as well as nearinfrared(Sm3+,Yb3+,Nd3+) luminescence of the corresponding Ln3+ ions(multicolor emission covered from 500 to 1400 nm spectral region),which is attributed to the energy transfer from the ligands to the Ln3+ ions via an antenna effect.展开更多
We report the upconversion luminescence of lithium fluoride single crystals excited by an infrared femtosecond laser at room temperature. The luminescence spectra demonstrate that upconversion luminescence originates ...We report the upconversion luminescence of lithium fluoride single crystals excited by an infrared femtosecond laser at room temperature. The luminescence spectra demonstrate that upconversion luminescence originates from the color center of F3^+. The dependence of fluorescence intensity on pump power reveals that a two-photon excitation process dominates the conversion of infrared radiation into visible emission. Simultaneous absorption of two infrared photons is suggested to produce the F3^+ center population, which leads to the characteristic visible emission. The results are on the reveal and evaluation of the simultaneous two-photon absorption on the green upconversion process.展开更多
基金Supported by the National Natural Science Foundation of China(No.20901066)the Natural Science Foundation of Yunnan Province(No.2012FB122)+3 种基金the Education Science Foundation of Yunnan Province(No.2013Z050)the Science Foundation of State Key Laboratory of Structural Chemistry(No.20140012)Training Program for Young Academic and Technical Leader in Yunnan Provincethe Science Foundation of Key Laboratory of Micro-and Nano-materials and Technology in Yunnan Province(No.ZZ2016002)
文摘The potassium terbium polyphosphate crystal KTb(PO3)4 has been synthesized using a high temperature solution reaction method. The structure and composition were characterized by single-crystal X-ray diffraction, powder X-ray diffraction and elemental analysis. The compound crystallizes in the monoclinic space group P21/n with a=10.3182(6), b=8.9129(5), c=10.7940(6) , β=105.993(1)o, V=954.3 3, Z=4, Mr=513.91, Dc=3.577 g/cm3, μ=8.585 mm(-1), F(000)=960, S=0.955,(Δρ)max=1.380,(Δρ)min=–3.428 e/3, the final R=0.0301 and w R=0.0400 for 2301 observed reflections with I 〉 2σ(I). In addition, pure powder of isostructural Rb Tb(PO3)4 was synthesized in order to investigate the optical property. Photoluminescence measurements show that both crystals ATb(PO3)4(A=K(1), Rb(2)) are promising candidates to become solid-state visible green light-emitting sources.
基金Project supported by the National Natural Science Foundation of China(21571125,21471144)National Key R&D Program of China(2016YFE0114800)the project from State Key Laboratory of Rare Earth Resource Utilization(RERU2016013)
文摘Recently,much attention has been paid to the lanthanide luminescent materials based on the visiblelight sensitization for their potential applications in the fields of bio-imaging and optical devices.In this work,the lanthanide complexes have been covalently bonded to the ordered mesoporous titania(OMT) matrix,and the resulting titania-based hybrid ordered mesoporous materials(named as LnDBOMT,Ln = Eu,Sm,Yb,Nd) were characterized by using Fourier-transform infrared(FT-IR) spectroscopy,small-angle X-ray powder diffraction(SAXD),N2 adsorption-desorption isotherms,transmission electron microscopy(TEM),fluorescence spectroscopy,and thermogravimetric analysis.Generally,exciting with visible light is advantageous over UV excitation.Of importance here is that,under excitation with visible light,the LnDB-OMT all show characteristic visible(Eu3+,Sm3+) as well as nearinfrared(Sm3+,Yb3+,Nd3+) luminescence of the corresponding Ln3+ ions(multicolor emission covered from 500 to 1400 nm spectral region),which is attributed to the energy transfer from the ligands to the Ln3+ ions via an antenna effect.
基金supported by the National Natural Science Foundation of China under Grant Nos.61178024 and 11374316
文摘We report the upconversion luminescence of lithium fluoride single crystals excited by an infrared femtosecond laser at room temperature. The luminescence spectra demonstrate that upconversion luminescence originates from the color center of F3^+. The dependence of fluorescence intensity on pump power reveals that a two-photon excitation process dominates the conversion of infrared radiation into visible emission. Simultaneous absorption of two infrared photons is suggested to produce the F3^+ center population, which leads to the characteristic visible emission. The results are on the reveal and evaluation of the simultaneous two-photon absorption on the green upconversion process.