设 B 是(?)上的 Brown 运动,考虑平面上 Volterra—It(?)型随机微分方程(Ⅰ)X_(?)=(?)+(?)a(z,ξ,X_ξ)dξ+∫_(R_z)β(z,ξ,X_(?))dB_(?) z∈R_+~2其中(?)是两参数连续过程,满足:对(?)T>0,(?),则当α(z,ξ,x),β(z,ξ,x)连续,且关于...设 B 是(?)上的 Brown 运动,考虑平面上 Volterra—It(?)型随机微分方程(Ⅰ)X_(?)=(?)+(?)a(z,ξ,X_ξ)dξ+∫_(R_z)β(z,ξ,X_(?))dB_(?) z∈R_+~2其中(?)是两参数连续过程,满足:对(?)T>0,(?),则当α(z,ξ,x),β(z,ξ,x)连续,且关于 z 满足 Lip 条件,关于 x 满足增长性条件时,本文用迟滞逼近方法证得方程(Ⅰ)弱解存在。展开更多
文摘设 B 是(?)上的 Brown 运动,考虑平面上 Volterra—It(?)型随机微分方程(Ⅰ)X_(?)=(?)+(?)a(z,ξ,X_ξ)dξ+∫_(R_z)β(z,ξ,X_(?))dB_(?) z∈R_+~2其中(?)是两参数连续过程,满足:对(?)T>0,(?),则当α(z,ξ,x),β(z,ξ,x)连续,且关于 z 满足 Lip 条件,关于 x 满足增长性条件时,本文用迟滞逼近方法证得方程(Ⅰ)弱解存在。
基金supported by Jiangsu Natural Science fund for Colleges and Universities(06KJD110175)Natural Science Fund of Xuzhou Institute of Technology(XKY2008310)