It is well-known that the equilibrium isotope fractionation of mercury(Hg)includes classical massdependent fractionations(MDFs)and nuclear volume effect(NVE)induced mass-independent fractionations(MIFs).However,the ef...It is well-known that the equilibrium isotope fractionation of mercury(Hg)includes classical massdependent fractionations(MDFs)and nuclear volume effect(NVE)induced mass-independent fractionations(MIFs).However,the effect of the NVE on these kinetic processes is not known.The total fractionations(MDFs+NVEinduced MIFs)of several representative Hg-incorporated substances were selected and calculated with ab initio calculations in this work for both equilibrium and kinetic processes.NVE-induced MIFs were calculated with scaled contact electron densities at the nucleus through systematic evaluations of their accuracy and errors using the Gaussian09 and DIRAC19 packages(named the electron density scaling method).Additionally,the NVE-induced kinetic isotope effect(KIE)of Hg isotopes are also calculated with this method for several representative Hg oxidation reactions by chlorine species.Total KIEs for 202 Hg/^(198)Hg ranging from−2.27‰to 0.96‰are obtained.Three anomalous^(202)Hg-enriched KIEs(δ^(202)Hg/^(198)Hg=0.83‰,0.94‰,and 0.96‰,)caused by the NVE are observed,which are quite different from the classical view(i.e.,light isotopes react faster than the heavy ones).The electron density scaling method we developed in this study can provide an easier way to calculate the NVE-induced KIEs for heavy isotopes and serve to better understand the fractionation mechanisms of mercury isotope systems.展开更多
To investigate equilibrium mercury(Hg)and lead(Pb)isotope fractionation caused by the nuclear volume effect(NVE)in crystals,the electron densities at nuclei(i.e.,|Ψ(0)|2)for Hg-or Pb-bearing crystalline compounds wer...To investigate equilibrium mercury(Hg)and lead(Pb)isotope fractionation caused by the nuclear volume effect(NVE)in crystals,the electron densities at nuclei(i.e.,|Ψ(0)|2)for Hg-or Pb-bearing crystalline compounds were investigated by using the relativistic spin orbit zeroth-order regular approximation(ZORA)method with a three-dimensional periodic boundary condition based on the density functional theory(DFT).Many isotope fractionation factors of crystalline compounds are provided for the first time.Our results show,even at1000℃,NVE-driven Hg and Pb isotope fractionation are meaningfully large,i.e.,range from 0.12‰to 0.49‰(202Hg/^(198)Hg),from-0.20‰to 0.17‰(208Pb/^(206)Pb)and from-0.08‰to 0.06‰(207Pb/^(206) Pb)relative to Hg0 vapor and Pb0 vapor,respectively.Specifically,the fractionations range from-0.06‰to-0.20‰(208Pb/^(206)Pb)and from-0.02‰to-0.08‰(207Pb/^(206)Pb)for Pb2+-bearing species,from 0.10‰to 0.17‰(208Pb/^(206)Pb)and from 0.04‰to 0.06‰(207Pb/^(206)Pb)for Pb4+-bearing species in crystals.All calculated Hg-bearing species in crystals will enrich heavier isotope(202Hg)relative to Hg0 vapor.Meanwhile,Pb4+-bearing species enrich heavier Pb isotopes(208Pb and 207Pb)than Pb^(2+)-bearing species in crystals,which the enrichment can be up to 0.37‰(208-Pb/^(206)Pb)and 0.14‰(207Pb/^(206)Pb)at 1000℃,due to their NVEs are in opposite directions.The NVE-driven MIFs of Hg isotopes,which are compared to the Hg202-Hg198baseline,are up to-0.158‰(ΔNV199Hg),-0.024‰(ΔNV200Hg)and-0.094‰(ΔNV201Hg)relative to Hg0 vapor at5000 C.For all studied Hg-bearing species in crystals,the MIFs of two odd-mass isotopes(i.e.,ΔNV199Hg andΔNV201Hg)will be changed proportionally and their ratio(i.e.,ΔNV199Hg/ΔNV201Hg)will be a constant 1.67.The NVE can also cause mass-independent fractionations for 207Pb and 204 Pb compared to the baseline of 208Pb and 206Pb.The largest NVEdriven MIFs are 0.043‰(ΔNV207Pb)and-0.040‰(ΔNV204Pb)among all the studied species relative to Pb0 vapor at 5000 C.The magnitudes of odd-mass isotope MIF(ΔNV207Pb)and even-mass isotope MIF(ΔNV204Pb)are almost the same but with opposite signs,leading to the MIF ratio of them(i.e.,ΔNV207Pb/ΔNV204Pb)is-1.08.展开更多
Bound states, such as qq and q^-q, may exist the volume of the bound states may evoke a reduction in investigate qualitatively the volume effect on the properties states start to be completely melted.
Volume effect has been extensively investigated in several families of solid electrolytes, i.e., expanding the skeleton lattice by bigger-size substitution favors the ionic conduction. However, this effect is not appl...Volume effect has been extensively investigated in several families of solid electrolytes, i.e., expanding the skeleton lattice by bigger-size substitution favors the ionic conduction. However, this effect is not applicable in α-Li2SO4 and α-Na3PO4 based inorganic ionic plastic crystal electrolytes, a unique family of solid electrolytes. Here, it is proposed that the underlying rotational motion effect of polyanion, which is actually inhibited by the substitution of bigger-size polyanion in single-phase solid solution region and causes the unexpected lowering of the ionic conductivity instead, should need the more consideration. Furthermore, through utilizing the rotational motion effect of polyanion, it is given that a new explanation of the ionic conductivities of Li10MP2S12 (M = Si, Ge, Se) electrolytes deviating from the volume effect. These results inspire new vision of rationalization of the high-performance solid electrolytes by tuning the rotational motion effect of polyanion.展开更多
A theoretical model for the translocation process of biomacromolecule is developed based on the self-consistent field theory (SCFT), where the biomacromolecule is regarded as a self-avoiding polymer chain actuated b...A theoretical model for the translocation process of biomacromolecule is developed based on the self-consistent field theory (SCFT), where the biomacromolecule is regarded as a self-avoiding polymer chain actuated by the external potential. In this theoretical model, the external potential, the Coulomb electrostatic potential of the charged ions (the electrolyte effect), and the attractive interaction between the polymer and the nanopore (the excluded volume effect) are all considered, which have effects on the free energy landscape and conformation entropy during the translocation stage. The result shows that the entropy barrier of the polymer in the solution with high valence electrolyte is much larger than that with low valence electrolyte under the same condition, leading to that the translocation time of the DNA molecules in the solution increases when the valence electrolyte increases. In addition, the attractive interaction between the polymer and the nanopore increases the free energy of the polymer, which means that the probability of the translocation through the nanopore increases. The average translocation time decreases when the excluded volume effect parameter increases. The electrolyte effect can prolong the average translocation time. The simulation results agree well with the available experimental results.展开更多
An anomalous isotope effect exists in many heavy element isotope systems (e.g., Sr, Gd, Zn, U). This effect used to be called the "odd--even isotope effect" because the odd mass number isotopes behave differently ...An anomalous isotope effect exists in many heavy element isotope systems (e.g., Sr, Gd, Zn, U). This effect used to be called the "odd--even isotope effect" because the odd mass number isotopes behave differently from the even mass number isotopes. This mass-indepen- dent isotope fractionation driving force, which originates from the difference in the ground-state electronic energies caused by differences in nuclear size and shape, is cur- rently denoted as the nuclear field shift effect (NFSE). It is found that the NFSE can drive isotope fractionation of some heavy elements (e.g., Hg, T1, U) to an astonishing degree, far more than the magnitude caused by the con- ventional mass-dependent effect (MDE). For light ele- ments, the MDE is the dominant factor in isotope fractionation, while the NFSE is neglectable. Furthermore, the MDE and the NFSE both decrease as temperatures increase, though at different rates. The MDE decreases rapidly with a factor of 1/T2, while the NFSE decreases slowly with a factor of 1/T. As a result, even at high temperatures, the NFSE is still significant for many heavy element isotope systems. In this review paper, we begin with an introduction of the basic concept of the NSFE, including its history and recent progress, and follow with the potential implications of the inclusion of the NFSE into the kinetic isotope fractionation effect (KIE) and heavy isotope geochronology.展开更多
The s-wave pion-pion scattering lengths a0 and a2 are studied at finite temperature and in finite spatial volume under the framework of the Nambu-Jona-Lasinio model.The behavior beyond the pseudo transition temperatur...The s-wave pion-pion scattering lengths a0 and a2 are studied at finite temperature and in finite spatial volume under the framework of the Nambu-Jona-Lasinio model.The behavior beyond the pseudo transition temperature is investigated using proper time regularization.The scattering length a0 exhibits singularity near the Mott temperature,and a2 is a continuous but non-monotonic function of temperature.We present the effect of finite volume on the scattering length and find that a0 can be negative and its singularity disappears at small volumes,which may hint at the existence of a chiral phase transition with decreasing volume.展开更多
Despite considerable advances in synthesizing high-quality core/shell upconversion(UC)nanocrystals(NC;UCNC)and UCNC photophysics,the application of near-infrared(NIR)-excitable lanthanide-doped UCNC in the life and ma...Despite considerable advances in synthesizing high-quality core/shell upconversion(UC)nanocrystals(NC;UCNC)and UCNC photophysics,the application of near-infrared(NIR)-excitable lanthanide-doped UCNC in the life and material sciences is still hampered by the relatively low upconversion luminescence(UCL)of UCNC of small size or thin protecting shell.To obtain deeper insights into energy transfer and surface quenching processes involving Yb^(3+) and Er^(3+) ions,we examined energy loss processes in differently sized solid core NaYF_(4) nanocrystals doped with either Yb^(3+)(YbNC;20%Yb^(3+))or Er^(3+)(ErNC;2%Er^(3+))and co-doped with Yb^(3+) and Er^(3+)(YbErNC;20%Yb^(3+) and 2%Er^(3+))without a surface protection shell and coated with a thin and a thick NaYF_(4) shell in comparison to single and co-doped bulk materials.Luminescence studies at 375 nm excitation demonstrate back-energy transfer(BET)from the ^(4)G_(11/2) state of Er^(3+) to the ^(2)F_(5/2) state of Yb^(3+),through which the red Er^(3+) ^(4)F_(9/2) state is efficiently populated.Excitation power density(P)-dependent steady state and time-resolved photoluminescence measurements at different excitation and emission wavelengths enable to separate surface-related and volume-related effects for two-photonic and three-photonic processes involved in UCL and indicate a different influence of surface passivation on the green and red Er3+emission.The intensity and lifetime of the latter respond particularly to an increase in volume of the active UCNC core.We provide a three-dimensional random walk model to describe these effects that can be used in the future to predict the UCL behavior of UCNC.展开更多
The viscosity behavior of polyvinylpyrrolidone(PVP)has been determined at 25℃ in mixed solvents comprising water/dimethylformamide(DMF)and water/methanol(MeOH).Analysis of the data has considered the PVP as being bot...The viscosity behavior of polyvinylpyrrolidone(PVP)has been determined at 25℃ in mixed solvents comprising water/dimethylformamide(DMF)and water/methanol(MeOH).Analysis of the data has considered the PVP as being both host and guest polymer in solution.The intrinsic viscosity of PVP in DMF is higher than in water and in MeOH,but also increases in a mixed solvent with high water content because of the effect of polymer-solvent interactions.It was also found that the intrinsic viscosity of PVP at finite concentration,[η_(pvp)]_c decreases with an increase in the concentration of PVP in solution.The viscosity behavior of PVP in a mixed solvent is affected by the concentration-dependent intermolecular excluded volume effect,which can be quantitatively expressed by the parameter,b_Y,which reflects the shrinkage of PVP chain coils,resulting in a decrease of[η_(pvp)]_c.The effect of temperature on the viscosity behavior of PVP in MeOH shows that the interaction parameter increases up to a maximum value,and then decreases after a certain temperature.展开更多
The results of the assessment of the influence of paper insulation on the discharge initiation in oil were presented in this paper. This assessment based on the results of performed experimental works and on the analy...The results of the assessment of the influence of paper insulation on the discharge initiation in oil were presented in this paper. This assessment based on the results of performed experimental works and on the analysis of electrical field distribution. Both types of the studies were connected with the model HV (high voltage) electrode setups covered by paper and immersed in oil. Experimental works indicated that the source of "weak points" of paper-oil model electrode setup is oil, not the surface of metal or insulation wrapping. Such hypothesis, resulting mainly from the measured times to initiations of discharges developing from bare and insulated HV electrodes, was verified by the analysis of electrical field distribution performed on the basis of finite element method applied in the COMSOL Multiphysics software. This analysis confirmed preliminary the made hypothesis. Correlation with the most stressed oil volume law was also observed.展开更多
The ability to correctly quantify activity concentration with single photon emission computed tomography (SPECT) is limited by its spatial resolution. Blurring of data between adjacent structures, which is known as ...The ability to correctly quantify activity concentration with single photon emission computed tomography (SPECT) is limited by its spatial resolution. Blurring of data between adjacent structures, which is known as partial volume effects, can be compensated for by utilizing high resolution structural information from other imaging modalities such as CT or MRI. Previously developed partial volume correction (PVC) methods normally assume a spatially invariant point spread function. In SPECT this is not a good approximation, since the resolution varies with the distance from the collimator. A new method, p-PVC, was developed in this paper, which takes into account the distance dependent blurring. The method operates in projection space and is combined with filtered back-projection (FBP) reconstruction. Results from simulations show that similar quantitative results could be obtained with p-PVC+FBP as with OSEM with resolution recovery, although with better structural definition and an order of magnitude faster.展开更多
The potassium-ion batteries(PIBs)have become the promising energy storage devices due to their relatively moderate cost and plenteous potassium resources.Whereas,the main drawback of PIBs is unsatisfacto ry electroche...The potassium-ion batteries(PIBs)have become the promising energy storage devices due to their relatively moderate cost and plenteous potassium resources.Whereas,the main drawback of PIBs is unsatisfacto ry electrochemical perfo rmance induced by the larger ionic radius of potassium ion.Herein,we report a well-designed,uniform-dispersed,and morphology-controllable zinc sulfide(ZnS)quantum dots loading on graphene as an anode in the PIBs.The directed uniform dispersion of the in-situ growing ZnS quantum dots(~2.8 nm in size)on graphene can mitigate the volume effect during the insertionextraction process and shorten the migration path of potassium ions.As a result,the battery exhibits superior cycling stability(350.4 mAh/g over 200 cycles at 0.1 A/g)and rate performance(98.8 mAh/g at2.0 A/g).We believe the design of active material with quantum dot-minimized size provides a novel route into PIBs and contributes to eliminating the major electrode failure issues of the system.展开更多
The effect of dextran on the conformation (or secondary structure) and thermal stability of creatine kinase (CK) was studied using the far-ultraviolet (UV) circular dichroism (CD) spectra. The results showed t...The effect of dextran on the conformation (or secondary structure) and thermal stability of creatine kinase (CK) was studied using the far-ultraviolet (UV) circular dichroism (CD) spectra. The results showed that lower concentrations of dextran (less than 60 g/L) induced formation of the secondary CK structures. However, the secondary structure content of CK decreased when the dextran concentrations exceeded 60 g/L. Thermally induced transition curves were measured for CK in the presence of different concentrations of dextran by far-UV CD. The thermal transition curves were fitted to a two-state model by a nonlinear, least-squares method to obtain the transition temperature of the unfolding transition. An increase in the transition temperature was observed with the increase of the dextran concentration. These observations qualitatively accord with predictions of a previously proposed model for the effect of intermolecular excluded volume (macromolecular crowding) on protein stability and conformation. These findings imply that the effects of macromolecular crowding can have an important influence on our understanding of how protein folding occurs in vivo.展开更多
基金This paper is supported by Chinese NSF project(42130114)the strategic priority research program(B)of CAS(XDB41000000)the pre-research Project on Civil Aerospace Technologies No.D020202 funded by Chinese National Space Administration(CNSA)。
文摘It is well-known that the equilibrium isotope fractionation of mercury(Hg)includes classical massdependent fractionations(MDFs)and nuclear volume effect(NVE)induced mass-independent fractionations(MIFs).However,the effect of the NVE on these kinetic processes is not known.The total fractionations(MDFs+NVEinduced MIFs)of several representative Hg-incorporated substances were selected and calculated with ab initio calculations in this work for both equilibrium and kinetic processes.NVE-induced MIFs were calculated with scaled contact electron densities at the nucleus through systematic evaluations of their accuracy and errors using the Gaussian09 and DIRAC19 packages(named the electron density scaling method).Additionally,the NVE-induced kinetic isotope effect(KIE)of Hg isotopes are also calculated with this method for several representative Hg oxidation reactions by chlorine species.Total KIEs for 202 Hg/^(198)Hg ranging from−2.27‰to 0.96‰are obtained.Three anomalous^(202)Hg-enriched KIEs(δ^(202)Hg/^(198)Hg=0.83‰,0.94‰,and 0.96‰,)caused by the NVE are observed,which are quite different from the classical view(i.e.,light isotopes react faster than the heavy ones).The electron density scaling method we developed in this study can provide an easier way to calculate the NVE-induced KIEs for heavy isotopes and serve to better understand the fractionation mechanisms of mercury isotope systems.
基金supported by National Natural Science Foundation of China (NSFC) projects (41703012)Qinghai Science and Technology projects (2018-ZJ-956Q)+2 种基金the supports of the Strategic Priority Research Program (B) of CAS (XDB18010100, XDB41000000)pre-research Project on Civil Aerospace Technologies No. D020202 funded by the Chinese National Space AdministrationNSFC projects (41530210)。
文摘To investigate equilibrium mercury(Hg)and lead(Pb)isotope fractionation caused by the nuclear volume effect(NVE)in crystals,the electron densities at nuclei(i.e.,|Ψ(0)|2)for Hg-or Pb-bearing crystalline compounds were investigated by using the relativistic spin orbit zeroth-order regular approximation(ZORA)method with a three-dimensional periodic boundary condition based on the density functional theory(DFT).Many isotope fractionation factors of crystalline compounds are provided for the first time.Our results show,even at1000℃,NVE-driven Hg and Pb isotope fractionation are meaningfully large,i.e.,range from 0.12‰to 0.49‰(202Hg/^(198)Hg),from-0.20‰to 0.17‰(208Pb/^(206)Pb)and from-0.08‰to 0.06‰(207Pb/^(206) Pb)relative to Hg0 vapor and Pb0 vapor,respectively.Specifically,the fractionations range from-0.06‰to-0.20‰(208Pb/^(206)Pb)and from-0.02‰to-0.08‰(207Pb/^(206)Pb)for Pb2+-bearing species,from 0.10‰to 0.17‰(208Pb/^(206)Pb)and from 0.04‰to 0.06‰(207Pb/^(206)Pb)for Pb4+-bearing species in crystals.All calculated Hg-bearing species in crystals will enrich heavier isotope(202Hg)relative to Hg0 vapor.Meanwhile,Pb4+-bearing species enrich heavier Pb isotopes(208Pb and 207Pb)than Pb^(2+)-bearing species in crystals,which the enrichment can be up to 0.37‰(208-Pb/^(206)Pb)and 0.14‰(207Pb/^(206)Pb)at 1000℃,due to their NVEs are in opposite directions.The NVE-driven MIFs of Hg isotopes,which are compared to the Hg202-Hg198baseline,are up to-0.158‰(ΔNV199Hg),-0.024‰(ΔNV200Hg)and-0.094‰(ΔNV201Hg)relative to Hg0 vapor at5000 C.For all studied Hg-bearing species in crystals,the MIFs of two odd-mass isotopes(i.e.,ΔNV199Hg andΔNV201Hg)will be changed proportionally and their ratio(i.e.,ΔNV199Hg/ΔNV201Hg)will be a constant 1.67.The NVE can also cause mass-independent fractionations for 207Pb and 204 Pb compared to the baseline of 208Pb and 206Pb.The largest NVEdriven MIFs are 0.043‰(ΔNV207Pb)and-0.040‰(ΔNV204Pb)among all the studied species relative to Pb0 vapor at 5000 C.The magnitudes of odd-mass isotope MIF(ΔNV207Pb)and even-mass isotope MIF(ΔNV204Pb)are almost the same but with opposite signs,leading to the MIF ratio of them(i.e.,ΔNV207Pb/ΔNV204Pb)is-1.08.
基金The project supported in part by National Natural Science Foundation of China under Grant Nos. 90103019 and 10428510.We thank professor Yu-Xin Liu for useful discussions,
文摘Bound states, such as qq and q^-q, may exist the volume of the bound states may evoke a reduction in investigate qualitatively the volume effect on the properties states start to be completely melted.
基金financially supported by the National Natural Science Foundation of China(Nos.U1430104,51622207 and 51372228)the National Key Research and Development Program of China(No.2017YFB0701600)
文摘Volume effect has been extensively investigated in several families of solid electrolytes, i.e., expanding the skeleton lattice by bigger-size substitution favors the ionic conduction. However, this effect is not applicable in α-Li2SO4 and α-Na3PO4 based inorganic ionic plastic crystal electrolytes, a unique family of solid electrolytes. Here, it is proposed that the underlying rotational motion effect of polyanion, which is actually inhibited by the substitution of bigger-size polyanion in single-phase solid solution region and causes the unexpected lowering of the ionic conductivity instead, should need the more consideration. Furthermore, through utilizing the rotational motion effect of polyanion, it is given that a new explanation of the ionic conductivities of Li10MP2S12 (M = Si, Ge, Se) electrolytes deviating from the volume effect. These results inspire new vision of rationalization of the high-performance solid electrolytes by tuning the rotational motion effect of polyanion.
基金supported by the National Natural Science Foundation of China(No.51375090)
文摘A theoretical model for the translocation process of biomacromolecule is developed based on the self-consistent field theory (SCFT), where the biomacromolecule is regarded as a self-avoiding polymer chain actuated by the external potential. In this theoretical model, the external potential, the Coulomb electrostatic potential of the charged ions (the electrolyte effect), and the attractive interaction between the polymer and the nanopore (the excluded volume effect) are all considered, which have effects on the free energy landscape and conformation entropy during the translocation stage. The result shows that the entropy barrier of the polymer in the solution with high valence electrolyte is much larger than that with low valence electrolyte under the same condition, leading to that the translocation time of the DNA molecules in the solution increases when the valence electrolyte increases. In addition, the attractive interaction between the polymer and the nanopore increases the free energy of the polymer, which means that the probability of the translocation through the nanopore increases. The average translocation time decreases when the excluded volume effect parameter increases. The electrolyte effect can prolong the average translocation time. The simulation results agree well with the available experimental results.
基金funding support from the973 Program(2014CB440904)Chinese NSF projects(41225012,41490635,41530210)
文摘An anomalous isotope effect exists in many heavy element isotope systems (e.g., Sr, Gd, Zn, U). This effect used to be called the "odd--even isotope effect" because the odd mass number isotopes behave differently from the even mass number isotopes. This mass-indepen- dent isotope fractionation driving force, which originates from the difference in the ground-state electronic energies caused by differences in nuclear size and shape, is cur- rently denoted as the nuclear field shift effect (NFSE). It is found that the NFSE can drive isotope fractionation of some heavy elements (e.g., Hg, T1, U) to an astonishing degree, far more than the magnitude caused by the con- ventional mass-dependent effect (MDE). For light ele- ments, the MDE is the dominant factor in isotope fractionation, while the NFSE is neglectable. Furthermore, the MDE and the NFSE both decrease as temperatures increase, though at different rates. The MDE decreases rapidly with a factor of 1/T2, while the NFSE decreases slowly with a factor of 1/T. As a result, even at high temperatures, the NFSE is still significant for many heavy element isotope systems. In this review paper, we begin with an introduction of the basic concept of the NSFE, including its history and recent progress, and follow with the potential implications of the inclusion of the NFSE into the kinetic isotope fractionation effect (KIE) and heavy isotope geochronology.
基金Supported by the Fostering Program in Disciplines Possessing Novel Features for Natural Science of Sichuan University(2020SCUNL209)。
文摘The s-wave pion-pion scattering lengths a0 and a2 are studied at finite temperature and in finite spatial volume under the framework of the Nambu-Jona-Lasinio model.The behavior beyond the pseudo transition temperature is investigated using proper time regularization.The scattering length a0 exhibits singularity near the Mott temperature,and a2 is a continuous but non-monotonic function of temperature.We present the effect of finite volume on the scattering length and find that a0 can be negative and its singularity disappears at small volumes,which may hint at the existence of a chiral phase transition with decreasing volume.
基金from the German Science Foundation(DFG,Nos.RE 1203/18-1 and HA 1649/7-1)。
文摘Despite considerable advances in synthesizing high-quality core/shell upconversion(UC)nanocrystals(NC;UCNC)and UCNC photophysics,the application of near-infrared(NIR)-excitable lanthanide-doped UCNC in the life and material sciences is still hampered by the relatively low upconversion luminescence(UCL)of UCNC of small size or thin protecting shell.To obtain deeper insights into energy transfer and surface quenching processes involving Yb^(3+) and Er^(3+) ions,we examined energy loss processes in differently sized solid core NaYF_(4) nanocrystals doped with either Yb^(3+)(YbNC;20%Yb^(3+))or Er^(3+)(ErNC;2%Er^(3+))and co-doped with Yb^(3+) and Er^(3+)(YbErNC;20%Yb^(3+) and 2%Er^(3+))without a surface protection shell and coated with a thin and a thick NaYF_(4) shell in comparison to single and co-doped bulk materials.Luminescence studies at 375 nm excitation demonstrate back-energy transfer(BET)from the ^(4)G_(11/2) state of Er^(3+) to the ^(2)F_(5/2) state of Yb^(3+),through which the red Er^(3+) ^(4)F_(9/2) state is efficiently populated.Excitation power density(P)-dependent steady state and time-resolved photoluminescence measurements at different excitation and emission wavelengths enable to separate surface-related and volume-related effects for two-photonic and three-photonic processes involved in UCL and indicate a different influence of surface passivation on the green and red Er3+emission.The intensity and lifetime of the latter respond particularly to an increase in volume of the active UCNC core.We provide a three-dimensional random walk model to describe these effects that can be used in the future to predict the UCL behavior of UCNC.
文摘The viscosity behavior of polyvinylpyrrolidone(PVP)has been determined at 25℃ in mixed solvents comprising water/dimethylformamide(DMF)and water/methanol(MeOH).Analysis of the data has considered the PVP as being both host and guest polymer in solution.The intrinsic viscosity of PVP in DMF is higher than in water and in MeOH,but also increases in a mixed solvent with high water content because of the effect of polymer-solvent interactions.It was also found that the intrinsic viscosity of PVP at finite concentration,[η_(pvp)]_c decreases with an increase in the concentration of PVP in solution.The viscosity behavior of PVP in a mixed solvent is affected by the concentration-dependent intermolecular excluded volume effect,which can be quantitatively expressed by the parameter,b_Y,which reflects the shrinkage of PVP chain coils,resulting in a decrease of[η_(pvp)]_c.The effect of temperature on the viscosity behavior of PVP in MeOH shows that the interaction parameter increases up to a maximum value,and then decreases after a certain temperature.
文摘The results of the assessment of the influence of paper insulation on the discharge initiation in oil were presented in this paper. This assessment based on the results of performed experimental works and on the analysis of electrical field distribution. Both types of the studies were connected with the model HV (high voltage) electrode setups covered by paper and immersed in oil. Experimental works indicated that the source of "weak points" of paper-oil model electrode setup is oil, not the surface of metal or insulation wrapping. Such hypothesis, resulting mainly from the measured times to initiations of discharges developing from bare and insulated HV electrodes, was verified by the analysis of electrical field distribution performed on the basis of finite element method applied in the COMSOL Multiphysics software. This analysis confirmed preliminary the made hypothesis. Correlation with the most stressed oil volume law was also observed.
文摘The ability to correctly quantify activity concentration with single photon emission computed tomography (SPECT) is limited by its spatial resolution. Blurring of data between adjacent structures, which is known as partial volume effects, can be compensated for by utilizing high resolution structural information from other imaging modalities such as CT or MRI. Previously developed partial volume correction (PVC) methods normally assume a spatially invariant point spread function. In SPECT this is not a good approximation, since the resolution varies with the distance from the collimator. A new method, p-PVC, was developed in this paper, which takes into account the distance dependent blurring. The method operates in projection space and is combined with filtered back-projection (FBP) reconstruction. Results from simulations show that similar quantitative results could be obtained with p-PVC+FBP as with OSEM with resolution recovery, although with better structural definition and an order of magnitude faster.
基金financial support of this work by the Science,Technology,and Innovation Commission of Shenzhen Municipality(Nos.JCYJ20180508151856806 and JCYJ20180306171121424)the Key R&D Program of Shanxi(No.2019ZDLGY04-05)+3 种基金the National Natural Science Foundation of Shaanxi(Nos.2019JLZ-01,2019JLM-29 and 2020JQ-189)the National Natural Science Foundation of China(No.21603175)the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(Nos.2019-TS-06 and 2020-BJ-03)China Postdoctoral Science Foundation(No.2018M641015)。
文摘The potassium-ion batteries(PIBs)have become the promising energy storage devices due to their relatively moderate cost and plenteous potassium resources.Whereas,the main drawback of PIBs is unsatisfacto ry electrochemical perfo rmance induced by the larger ionic radius of potassium ion.Herein,we report a well-designed,uniform-dispersed,and morphology-controllable zinc sulfide(ZnS)quantum dots loading on graphene as an anode in the PIBs.The directed uniform dispersion of the in-situ growing ZnS quantum dots(~2.8 nm in size)on graphene can mitigate the volume effect during the insertionextraction process and shorten the migration path of potassium ions.As a result,the battery exhibits superior cycling stability(350.4 mAh/g over 200 cycles at 0.1 A/g)and rate performance(98.8 mAh/g at2.0 A/g).We believe the design of active material with quantum dot-minimized size provides a novel route into PIBs and contributes to eliminating the major electrode failure issues of the system.
基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the Ministry of Education, China
文摘The effect of dextran on the conformation (or secondary structure) and thermal stability of creatine kinase (CK) was studied using the far-ultraviolet (UV) circular dichroism (CD) spectra. The results showed that lower concentrations of dextran (less than 60 g/L) induced formation of the secondary CK structures. However, the secondary structure content of CK decreased when the dextran concentrations exceeded 60 g/L. Thermally induced transition curves were measured for CK in the presence of different concentrations of dextran by far-UV CD. The thermal transition curves were fitted to a two-state model by a nonlinear, least-squares method to obtain the transition temperature of the unfolding transition. An increase in the transition temperature was observed with the increase of the dextran concentration. These observations qualitatively accord with predictions of a previously proposed model for the effect of intermolecular excluded volume (macromolecular crowding) on protein stability and conformation. These findings imply that the effects of macromolecular crowding can have an important influence on our understanding of how protein folding occurs in vivo.