Thermoregulatory textiles,leveraging high-emissivity structural materials,have arisen as a promising candidate for personal cooling management;however,their advancement has been hindered by the underperformed water mo...Thermoregulatory textiles,leveraging high-emissivity structural materials,have arisen as a promising candidate for personal cooling management;however,their advancement has been hindered by the underperformed water moisture transportation capacity,which impacts on their thermophysiological comfort.Herein,we designed a wettability-gradient-induced-diode(WGID)membrane achieving by MXene-engineered electrospun technology,which could facilitate heat dissipation and moisture-wicking transportation.As a result,the obtained WGID membrane could obtain a cooling temperature of 1.5℃ in the“dry”state,and 7.1℃ in the“wet”state,which was ascribed to its high emissivity of 96.40%in the MIR range,superior thermal conductivity of 0.3349 W m^(-1) K^(-1)(based on radiation-and conduction-controlled mechanisms),and unidirectional moisture transportation property.The proposed design offers an approach for meticulously engineering electrospun membranes with enhanced heat dissipation and moisture transportation,thereby paving the way for developing more efficient and comfortable thermoregulatory textiles in a high-humidity microenvironment.展开更多
The production of renewable fuels through water splitting via photocatalytic hydrogen production holds significant promise.Nonetheless,the sluggish kinetics of hydrogen evolution and the inadequate water adsorption on...The production of renewable fuels through water splitting via photocatalytic hydrogen production holds significant promise.Nonetheless,the sluggish kinetics of hydrogen evolution and the inadequate water adsorption on photocatalysts present notable challenges.In this study,we have devised a straightforward hydrothermal method to synthesize Bi_(2)O_(3)(BO)derived from metal‐organic frameworks(MOFs),loaded with flower-like ZnIn_(2)S_(4)(ZIS).This approach substantially enhances water adsorption and surface catalytic reactions,resulting in a remarkable enhancement of photocatalytic activity.By employing triethanolamine(TEOA)as a sacrificial agent,the hydrogen evolution rate achieved with 15%(mass fraction)ZIS loading on BO reached an impressive value of 1610μmol∙h^(−1)∙g^(−1),marking a 6.34-fold increase compared to that observed for bare BO.Furthermore,through density functional theory(DFT)and ab initio molecular dynamics(AIMD)calculations,we have identified the reactions occurring at the ZIS/BO S-scheme heterojunction interface,including the identification of active sites for water adsorption and catalytic reactions.This study provides valuable insights into the development of high-performance composite photocatalytic materials with tailored electronic properties and wettability.展开更多
The sessile drop method was applied to the experimental investigation of the wetting and spreading behaviors of liquid Mg drops on pure Ni substrates.For comparison,the experiments were performed in two variants:(1)us...The sessile drop method was applied to the experimental investigation of the wetting and spreading behaviors of liquid Mg drops on pure Ni substrates.For comparison,the experiments were performed in two variants:(1)using the Capillary Purification(CP)procedure,which allows the non-contact heating and squeezing of a pure oxide-free Mg drop;(2)by classical Contact Heating(CH)procedure.The high-temperature tests were performed under isothermal conditions(CP:760℃for 30 s;CH:715℃for 300 s)using Ar+5 wt%H_(2) atmosphere.During the sessile drop tests,images of the Mg/Ni couples were recorded by CCD cameras(57 fps),which were then applied to calculate the contact angles of metal/substrate couples.Scanning and transmission electron microscopy analyses,both coupled with energy-dispersive X-ray spectroscopy,were used for detailed structural characterization of the solidified couples.It was found that an oxide-free Mg drop obtained by the CP procedure showed a wetting phenomenon on the Ni substrate(an average contact angleθ<90°in<1 s),followed by fast spreading and good wetting over the Ni substrate(θ_((CP))~20°in 5 s)to form a final contact angle ofθ_(f(CP))~18°.In contrast,a different wetting behavior was observed for the CH procedure,where the unavoidable primary oxide film on the Mg surface blocked the spreading of liquid Mg showing apparently non-wetting behavior after 300 s contact at the test temperature.However,in both cases,the deep craters formed in the Ni substrates under the Mg drops and significant change in the structure of initially pure Mg drops to Mg-Ni alloys suggest a strong dissolution of Ni in liquid Mg and apparent values of the final contact angles measured for the Mg/Ni system.展开更多
The infiltration casting method is widely employed for the preparation of ex-situ composite materials.However,the production of composite materials using this method must necessitates a comprehensive understanding of ...The infiltration casting method is widely employed for the preparation of ex-situ composite materials.However,the production of composite materials using this method must necessitates a comprehensive understanding of the wettability and interface characteristics between the reinforcing phase and the bulk metallic glasses(BMGs).This work optimized the composition of Zr-based BMGs through microalloying methods,resulting in a new set of Zr-based BMGs with excellent glass-forming ability.Wetting experiments between the Zr-based BMGs melts and W substrates were conducted using the traditional sessile drop method,and the interfaces were characterized utilizing a scanning electron microscope(SEM)equipped with energy dispersive X-ray spectroscopy(EDS).The work demonstrates that the microalloying method substantially enhances the wettability of the Zr-based BMGs melt.Additionally,the incorporation of Nb element impedes the formation of W-Zr phases,but the introduction of Nb element does not alter the extent of interdiffusion between the constituent elements of the amorphous matrix and W element,indicating that the influence of Nb element on the diffusion of individual elements is minute.展开更多
A simulated oil viscosity prediction model is established according to the relationship between simulated oil viscosity and geometric mean value of T2spectrum,and the time-varying law of simulated oil viscosity in por...A simulated oil viscosity prediction model is established according to the relationship between simulated oil viscosity and geometric mean value of T2spectrum,and the time-varying law of simulated oil viscosity in porous media is quantitatively characterized by nuclear magnetic resonance(NMR)experiments of high multiple waterflooding.A new NMR wettability index formula is derived based on NMR relaxation theory to quantitatively characterize the time-varying law of rock wettability during waterflooding combined with high-multiple waterflooding experiment in sandstone cores.The remaining oil viscosity in the core is positively correlated with the displacing water multiple.The remaining oil viscosity increases rapidly when the displacing water multiple is low,and increases slowly when the displacing water multiple is high.The variation of remaining oil viscosity is related to the reservoir heterogeneity.The stronger the reservoir homogeneity,the higher the content of heavy components in the remaining oil and the higher the viscosity.The reservoir wettability changes after water injection:the oil-wet reservoir changes into water-wet reservoir,while the water-wet reservoir becomes more hydrophilic;the degree of change enhances with the increase of displacing water multiple.There is a high correlation between the time-varying oil viscosity and the time-varying wettability,and the change of oil viscosity cannot be ignored.The NMR wettability index calculated by considering the change of oil viscosity is more consistent with the tested Amott(spontaneous imbibition)wettability index,which agrees more with the time-varying law of reservoir wettability.展开更多
Inspired by the skin structure,an asymmetric wettability tri-layer nanofiber membrane(TNM)consisting of hydrophilic inner layer loaded with lidocaine hydrochloride(LID),hydrophobic middle layer with ciprofloxacin(CIP)...Inspired by the skin structure,an asymmetric wettability tri-layer nanofiber membrane(TNM)consisting of hydrophilic inner layer loaded with lidocaine hydrochloride(LID),hydrophobic middle layer with ciprofloxacin(CIP)and hydrophobic outer layer has been created.The hydrophobic outer layer endows the TNM with waterproof function and anti-adhesion from contaminants.The hydrophobic middle layer with CIP preserves long-term inhibition of bacteria growth and the hydrophilic inner layer with LID possesses optimal waterabsorbing capacity and air permeability.The TNM dramatically elevates the water contact angles from 10°(inner layer)to 120(outer layer),indicating an asymmetric wettability,which could directionally transport wound exudate within the materials and meanwhile maintain a comfortable and moist environment to promote wound healing.Furthermore,the sequential release of LID and CIP could relieve pain rapidly and achieve antibacterial effect in the long run,respectively.In addition,the TNM shows superior biocompatibility towards L929 cells.The in vivo results show the TNM could prevent infection,accelerate epithelial regeneration and significantly accelerate wound healing.This study indicates the developed TNM with asymmetrical wettability and synergetic drug release shows great potential as a wound dressing in clinical application.展开更多
Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the ef...Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the effects of complex pore structures and wettability.To address this issue,based on the digital rock of low permeability sandstone,a direct numerical simulation is performed considering the interphase drag and boundary slip to clarify the microscopic water-oil displacement process.In addition,a dual-porosity pore network model(PNM)is constructed to obtain the water-oil relative permeability of the sample.The displacement efficiency as a recovery process is assessed under different wetting and pore structure properties.Results show that microscopic displacement mechanisms explain the corresponding macroscopic relative permeability.The injected water breaks through the outlet earlier with a large mass flow,while thick oil films exist in rough hydrophobic surfaces and poorly connected pores.The variation of water-oil relative permeability is significant,and residual oil saturation is high in the oil-wet system.The flooding is extensive,and the residual oil is trapped in complex pore networks for hydrophilic pore surfaces;thus,water relative permeability is lower in the water-wet system.While the displacement efficiency is the worst in mixed-wetting systems for poor water connectivity.Microporosity negatively correlates with invading oil volume fraction due to strong capillary resistance,and a large microporosity corresponds to low residual oil saturation.This work provides insights into the water-oil flow from different modeling perspectives and helps to optimize the development plan for enhanced recovery.展开更多
Solar-driven interfacial evaporation is an emerging technology for water desalination.Generally,double-layered structure with separate surface wettability properties is usually employed for evaporator construction.How...Solar-driven interfacial evaporation is an emerging technology for water desalination.Generally,double-layered structure with separate surface wettability properties is usually employed for evaporator construction.However,creating materials with tunable properties is a great challenge because the wettability of existing materials is usually monotonous.Herein,we report vinyltrimethoxysilane as a single molecular unit to hybrid with bacterial cellulose(BC)fibrous network,which can be built into robust aerogel with entirely distinct wettability through controlling assembly pathways.Siloxane groups or carbon atoms are exposed on the surface of BC nanofibers,resulting in either superhydrophilic or superhydrophobic aerogels.With this special property,single component-modified aerogels could be integrated into a double-layered evaporator for water desalination.Under 1 sun,our evaporator achieves high water evaporation rates of 1.91 and 4.20 kg m^(-2)h^(-1)under laboratory and outdoor solar conditions,respectively.Moreover,this aerogel evaporator shows unprecedented lightweight,structural robustness,long-term stability under extreme conditions,and excellent salt-resistance,highlighting the advantages in synthesis of aerogel materials from the single molecular unit.展开更多
Shale contains a lot of clay minerals. Clay minerals mainly exist in nano- and micro-meter sized particles, and the pore structure is complex, which leads to its extremely complex wettability. The surface wettability ...Shale contains a lot of clay minerals. Clay minerals mainly exist in nano- and micro-meter sized particles, and the pore structure is complex, which leads to its extremely complex wettability. The surface wettability of clay minerals significantly affects the oil and gas-bearing capacity of shale reservoirs. Therefore, studying the wettability of common clay minerals in shale at the nanoscale is of great significance for shale hydrocarbon exploration and development. In this study, the wetting behavior of water in n-hexane and toluene on different clay mineral surfaces at the nanoscale was systematically studied using Molecular dynamics (MD) simulation. And the influencing factors of wettability were analyzed. Through the analysis of the morphological changes of water, relative concentration of water, RDF and interaction energy, it is concluded that the following order of water wettability on the surfaces of clay minerals: montmorillonite > chlorite > kaolinite > illite. Through the analysis of interaction energy, it is concluded that the hydrophilicity of four clay minerals is stronger than that of lipophilicity. And the main interactions between water and oil and the mineral surfaces were van der Waals force and electrostatic force. In addition, the temperature, liquid hydrocarbon type, and mineralization of water affected the wettability of clay minerals. The concentration of water on the surfaces of montmorillonite, kaolinite, and illite decreased with increasing temperature, and the water wettability decreased. At 298 K, the hydrophilicity of the surfaces of the clay minerals in toluene follows the order montmorillonite > chlorite > kaolinite > illite. The higher the NaHCO3 concentration in water, the weaker the wettability of the clay mineral surfaces to water. By comparing the previous experimental results with the MD simulation results, similar wetting characteristics were obtained, and the reliability of the simulation results was verified. MD simulation was used to explore the water wetting of the surfaces of four clay minerals in a shale reservoir from the micro level. This makes up for the lack of experimental means for clarifying the flow and production mechanisms of shale oil and gas and effectively improves the evaluation technology of shale.展开更多
The wall wettability of microchannels plays an important role in the gas-liquid mass transfer dynamics under Taylor flow.In this study,we regulated the contact angle of the wall surface through surface chemical grafti...The wall wettability of microchannels plays an important role in the gas-liquid mass transfer dynamics under Taylor flow.In this study,we regulated the contact angle of the wall surface through surface chemical grafting polymerization under controlled experimental conditions.The dynamic changes of CO_(2)bubbles flowing along the microchannel were captured by a high-speed video camera mounted on a stereo microscope,whilst a unit cell model was employed to theoretically investigate the gas-liquid mass transfer dynamics.We quantitatively characterized the effects of wall wettability,specifically the contact angle,on the formation mechanism of gas bubbles and mass transfer process experimentally.The results revealed that the gas bubble velocity,the overall volumetric liquid phase mass transfer coefficients(kLa),and the specific interfacial area(a)all increased with the increase of the contact angle.Conversely,gas bubble length and leakage flow decreased.Furthermore,we proposed a new modified model to predict the gas-liquid two-phase mass transfer performance,based on van Baten’s and Yao’s models.Our proposed model was observed to agree reasonably well with experimental observations.展开更多
Surface active ionic liquids (SAILs) are considered as prominent materials in enhanced oil recovery thanks to their high interfacial activity. This study reports the preparation and applications of a nanostructure Tri...Surface active ionic liquids (SAILs) are considered as prominent materials in enhanced oil recovery thanks to their high interfacial activity. This study reports the preparation and applications of a nanostructure Tripodal imidazolium SAIL as an environmentally-friendly substitute to the conventional surfactants. The product has a star-like molecular structure centered by a triazine spacer, namely [(C_(4)im)_(3)TA][Cl_(3)], prepared by a one-step synthesis method and characterized with FT-IR, NMR, XRD, and SEM analysis methods. The interfacial tension of the system was decreased to about 78% at critical micelle concentration of less than 0.08 mol·dm^(−3). Increasing temperature, from 298.2 to 323.2 K, improved this capability. The solid surface wettability was changed from oil-wet to water-wet and 80% and 77% stable emulsions of crude oil–aqueous solutions were created after one day and one week, respectively. Compared to the Gemini kind homologous SAILs, the superior effects of the Tripodal SAIL were revealed and attributed to the strong hydrophobic branches in the molecule. The Frumkin adsorption isotherm precisely reproduced the generated IFT data, and accordingly, the adsorption and thermodynamic parameters were determined.展开更多
This study investigated experimentally the coupled effects of hydrophilic SiO_(2) nanoparticles(NPs)and low-salinity water(LSW)on the wettability of synthetic clay-free Berea sandstone.Capillary pressure,interfacial t...This study investigated experimentally the coupled effects of hydrophilic SiO_(2) nanoparticles(NPs)and low-salinity water(LSW)on the wettability of synthetic clay-free Berea sandstone.Capillary pressure,interfacial tension(IFT),contact angle,Zeta potential,and dynamic displacement measurements were performed at various NP mass fractions and brine salinities.The U.S.Bureau of Mines(USBM)index was used to quantify the wettability alteration.Furthermore,the NP stability and retention and the effect of enhanced oil recovery by nanofluid were examined.The results showed that LSW immiscible displacement with NPs altered the wettability toward more water wet.With the decreasing brine salinity and increasing NP mass fraction,the IFT and contact angle decreased.The wettability alteration intensified most as the brine salinity decreased to 4000 mg/L and the NP mass fraction increased to 0.075%.Under these conditions,the resulting incremental oil recovery factor was approximately 13 percentage points.When the brine salinity was 4000 mg/L and the NP mass fraction was 0.025%,the retention of NPs caused the minimum damage to permeability.展开更多
The wettability of reservoir rocks saturated with oil and water is one of the most important factors influencing petrophysics and oil recovery.Minerals with different wettability constitute the overall heterogeneous w...The wettability of reservoir rocks saturated with oil and water is one of the most important factors influencing petrophysics and oil recovery.Minerals with different wettability constitute the overall heterogeneous wettability in rocks.Variations in sample composi-tion can be detected by nuclear magnetic resonance(NMR)measurements.In this paper,the method of using the magnetic susceptibility contrast between rock skeleton and saturated fluid to estimate wettability is proposed.The theoretical feasibility was firstly analyzed,and then the internal gradients caused by magnetic susceptibility contrasts were employed to interpret wettability alteration before and after ageing process in rocks.It was discovered that water and oil in the same pores experienced different internal gradients after ageing,which were associated with the differences in magnetic susceptibility con-trasts.After that,the free induction decay measurement was performed to acquire mag-netic susceptibility contrasts of artificial sandstone samples with the intermediate-wet condition.A refined NMR wettability index was presented and correlated with the Amott wettability tests.The experimental results demonstrate that the new method for deter-mining wettability is feasible.展开更多
The wettability of rocks affects the balance between capillary and viscous forces during multiphase flow through porous media,which in turn determines the fluid displacement process governing the recovery of oil from ...The wettability of rocks affects the balance between capillary and viscous forces during multiphase flow through porous media,which in turn determines the fluid displacement process governing the recovery of oil from subsurface formations.In this work,the mechanism of wettability reversal of aged synthetic sandstones by metal oxide nanoparticles(SiO_(2) and Al_(2)O_(3))was investigated with particular focus on the impact of surface roughness,zeta potential,and temperature.The synthetic surfaces were prepared from powders of Berea sandstone with known grain size ranges and their average roughness and roughness ratio were obtained from the 3D surface reconstruction of their microscope images.Each surface was subsequently aged in Permian crude oil to alter its wettability.For surfaces with larger grain sizes and lower surface roughness ratios,the lower capillary pressure allowed stronger oil/surface interactions,leading to enhanced oil-wetness.The wettability alteration effects of nanoparticles were then examined through real-time top view imaging and dynamic front view contact angle experiments.The negatively charged SiO_(2) nanoparticles rapidly reversed the sandstone wettability,indicating their potential applicability as wettability alteration agents.By contrast,the positively charged Al_(2)O_(3) counterpart caused no wettability reversal.The mechanism of wettability alteration was further studied by microscale interaction analyses and nanoscale transmission electron microscopy.Because nanoparticles were only a few nanometers large,the microscale roughness had a negligible effect on the wettability reversal.Instead,the combined effect of van der Waals dispersion forces and surface-charge-induced electrostatic forces were recognized as the two key factors affecting the wettability of sandstone particles.Such interactions may be curbed at elevated temperatures due to a decrease in the zeta potential and colloidal stability of the particles.展开更多
Wettability is an important surface property that deserves to further explore the factors on its alteration.Series of bis-N-heterocyclic quaternary ammonium salts with different spacer length and N-heterocyclic headgr...Wettability is an important surface property that deserves to further explore the factors on its alteration.Series of bis-N-heterocyclic quaternary ammonium salts with different spacer length and N-heterocyclic headgroups(morpholinium(BMMB,BMMD and BMMH),piperidinium(BPMH)and piperazinium(BMPMH))have been synthesized and employed for altering the wettability of vermiculite and its derivates(Vts)treated by Li^(+)-saturated heating method.The results of X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),thermogravimetric analysis(TG-DTG),scanning electron microscopy(SEM)and N_(2)adsorption/desorption isotherms indicate that all of the bis-N-heterocyclic quaternary ammonium salts have been successfully inserted into the vermiculite layers,leading to the organic monolayer.The results of capillary rise tests combined with Lipophilic to Hydrophilic Ratio(LHR)values unveil the wettability alteration of the organo-Vts.As the layer charge decreases,the hydrophilicity of the organo-Vts gradually increases,which is probably caused by the decline in binding sites.As the result of the change in spacer length of modifier,the wetting properties of morpholinium-based organo-Vts change in order of BMMD-Vts>BMMH-Vts>BMMB-Vts,and difference in N-heterocyclic headgroups leads to the sequence of wettability:BMPMH-Vts>BPMH-Vts>BMMH-Vts.Layer charge of Vt,spacer length and the type of the N-heterocyclic headgroup of modifier have the synergistic effect on the regulation of the wettability.展开更多
The membrane method based on adaptive wettability shows great advantages in oil-water separation.At present,researches focus on the excellent application performance of the membrane material,while the quantitative ana...The membrane method based on adaptive wettability shows great advantages in oil-water separation.At present,researches focus on the excellent application performance of the membrane material,while the quantitative analysis of interactions in oil-water separation is rarely recognized.Herein,we constructed an adaptable wettability membrane with multiple polymer networks by polydopamine(PDA)and mussel-inspired amphiphilic polymer.Based on the Owens three-probe liquid method,the surface energy of the modified membrane was verified to meet the adaptive wettability conditions,with surface energies(γ-8)of 147.6 mJ m^(−2)(superhydrophilic/underwater superoleophobic)and 49.87 mJ m^(−2)(superhydrophobic/superoleophobic),respectively.The adhesion or repulsion of the membrane to the oil phase under different conditions during the separation process was quantified by the chemical probe AFM technique.In addition,the oil-water selective separation mechanism was further analyzed in a simplified membrane microchannel model.The results show that the different wetting produces capillary additional pressure in opposite directions,resulting in different energies to be overcome when the oil or water passes through the microchannels,thus achieving selective separation.展开更多
The control of micro-wettability of pore-throat on shale oil occurrence in different types of reservoir spaces remains unclear.Take the shale oil reservoir of the Permian Lucaogou Formation in the Jimusar Sag,Junggar ...The control of micro-wettability of pore-throat on shale oil occurrence in different types of reservoir spaces remains unclear.Take the shale oil reservoir of the Permian Lucaogou Formation in the Jimusar Sag,Junggar Basin as an example,the reservoir space in laminated shale and the control of micro-wettability of pore-throat on shale oil occurrence were studied by using scanning electron microscope(SEM),multi-stage pyrolysis,quantitative fluorescence,nuclear magnetic resonance(NMR)and other techniques.The results show that there are mainly two types of laminated shale in the Lucaogou Formation,namely laminated shale rich in volcanic materials+terrigenous felsic,and laminated shale rich in volcanic materials+carbonate.The former type contains feldspar dissolution pores and intergranular pores,mainly with felsic mineral components around the pore-throats,which are water-wet and control the free shale oil.The latter type contains carbonate intercrystalline pores and organic pores,mainly with oil-wet mineral components around the pore-throats,which control the adsorbed shale oil.The oil-wet mineral components around the pore-throats are conducive to oil accumulation,but reduce the proportion of free oil.In the Lucaogou Formation,free oil,with high maturity and light quality,mainly occurs in the laminated shale rich in volcanic materials+terrigenous felsic.展开更多
This study used the diethylene triamine pentaacetic acid(DTPA)-seawater(SW)system to modify the sandstone rock wettability and enhance oil recovery.The investigation involved conducting wettability measurement,Zeta po...This study used the diethylene triamine pentaacetic acid(DTPA)-seawater(SW)system to modify the sandstone rock wettability and enhance oil recovery.The investigation involved conducting wettability measurement,Zeta potential measurement,and spontaneous imbibition experiment.The introduction of 5%DTPA-sW solution resulted in a significant decrease in the rock-oil contact angle from 143°to 23,along with a reduction in the Zeta potential from-2.29 mV to-13.06 mV,thereby altering the rock surface charge and shifting its wettability from an oil-wet state to a strongly water-wet state.The presence or absence of potential determining ions(Ca^(2+),Mg^(2+),SO_(4)^(2-))in the solution did not impact the effectiveness of DTPA in changing the rock wettability.However,by tripling the concentration of these ions in the solution,the performance of 5%DTPA-SW solution in changing wettability was impaired.Additionally,spontaneous imbibition tests demonstrated that the 5%DTPA-SW solution led to an increase in oil recovery up to 39.6%.Thus,the optimum mass fraction of DTPA for changing sandstone wettability was determined to be5%.展开更多
The wettability of leaf surface,commonly represented by contact angle(CA),affects various physiological and physical processes.The present study aims to better understand the wettability of tea leaves and elucidate it...The wettability of leaf surface,commonly represented by contact angle(CA),affects various physiological and physical processes.The present study aims to better understand the wettability of tea leaves and elucidate its influence on the energy barrier of the droplet condensation process.The CA values of different leaf ages(young,mature and old)of five famous tea cultivars(Maolu,longjing 43,Huangjinya,Zhongcha 108 and Anji Baicha)were measured via the sessile drop method,and the micro-morphology of two cultivars leaves(Maolu,Zhongcha 108)was investigated by a 3D super depth-of-field digital microscope.Specifically,two radically distinctive types of CA trends were observed,one was the decreased firstly and then increased slightly with the increase of leaf age,while the other stayed constant.The valley depth or maximum height(RZ)of Maolu leaf surface increased with the leaf age while the RZ of Zhongcha 108 leaf remained unchanged by comparing the microscopic features.The Maolu mature leaf CA decline attributed to the young leaf was hydrophilic(θ<90°),and it was considered that surface structures like folds and pits on old leaf played a crucial role in making CA increased.Small deviation in CA can lead to significant error in calculation of the contact angle function of energy barrier in phase change.It will have great significant for simulating and better understanding the formation of frost on tea leaves.展开更多
The threshold values of CO_(2) gas stripped off membranous residual oil from the pore walls are not clear under different temperatures, pressures and wettability conditions. The extent to which temperature, pressure a...The threshold values of CO_(2) gas stripped off membranous residual oil from the pore walls are not clear under different temperatures, pressures and wettability conditions. The extent to which temperature, pressure and wettability influence CO_(2) flooding for enhancing the recovery of residual oil in membranous formations also remains uncertain. Therefore, further quantitative characterization is entailed. In this study, the molecular dynamics method was employed to explore CO_(2) flooding under different temperatures, pressures and wettability conditions, aiming to enhance the production of membranous residual oil. The results reveal that the interaction energy between CO_(2), decane molecules and pore walls exhibits a decrease with increasing temperature and an increase with increasing pressure, respectively, in distinct wettability scenarios. When the temperature was at or below 363 K and the pressure was not lower than 40 MPa, CO_(2) gas could detach the membranous residual oil from the pore walls in the water-wet systems. When the temperature was equal to 363 K and the pressure remained under 40 MPa, or the temperature surpassed 363 K, CO_(2) gas failed to detach the membranous residual oil from the pore walls in the water-wet systems. For the mixed-wet and oil-wet systems, CO_(2) molecules could not detach the membranous residual oil from the pore walls. The hierarchy of influence regarding temperature, pressure and wettability on the competitive adsorption capacity of CO_(2) and decane molecules on the pore walls emerged as follows: wettability > temperature > pressure. The findings of this study offer valuable insights into the application of CO_(2) gas flooding for the exploitation of membranous residual oil on pore walls.展开更多
基金financial support from the National Natural Science Foundation of China(“Study of Multi-Responsive Shape Memory Polyurethane Nanocomposites Inspired by Natural Fibers”,Grant No.51673162)Startup Grant of CityU(“Laboratory of Wearable Materials for Healthcare”,Grant No.9380116).CityU PhD Scholarship.
文摘Thermoregulatory textiles,leveraging high-emissivity structural materials,have arisen as a promising candidate for personal cooling management;however,their advancement has been hindered by the underperformed water moisture transportation capacity,which impacts on their thermophysiological comfort.Herein,we designed a wettability-gradient-induced-diode(WGID)membrane achieving by MXene-engineered electrospun technology,which could facilitate heat dissipation and moisture-wicking transportation.As a result,the obtained WGID membrane could obtain a cooling temperature of 1.5℃ in the“dry”state,and 7.1℃ in the“wet”state,which was ascribed to its high emissivity of 96.40%in the MIR range,superior thermal conductivity of 0.3349 W m^(-1) K^(-1)(based on radiation-and conduction-controlled mechanisms),and unidirectional moisture transportation property.The proposed design offers an approach for meticulously engineering electrospun membranes with enhanced heat dissipation and moisture transportation,thereby paving the way for developing more efficient and comfortable thermoregulatory textiles in a high-humidity microenvironment.
文摘The production of renewable fuels through water splitting via photocatalytic hydrogen production holds significant promise.Nonetheless,the sluggish kinetics of hydrogen evolution and the inadequate water adsorption on photocatalysts present notable challenges.In this study,we have devised a straightforward hydrothermal method to synthesize Bi_(2)O_(3)(BO)derived from metal‐organic frameworks(MOFs),loaded with flower-like ZnIn_(2)S_(4)(ZIS).This approach substantially enhances water adsorption and surface catalytic reactions,resulting in a remarkable enhancement of photocatalytic activity.By employing triethanolamine(TEOA)as a sacrificial agent,the hydrogen evolution rate achieved with 15%(mass fraction)ZIS loading on BO reached an impressive value of 1610μmol∙h^(−1)∙g^(−1),marking a 6.34-fold increase compared to that observed for bare BO.Furthermore,through density functional theory(DFT)and ab initio molecular dynamics(AIMD)calculations,we have identified the reactions occurring at the ZIS/BO S-scheme heterojunction interface,including the identification of active sites for water adsorption and catalytic reactions.This study provides valuable insights into the development of high-performance composite photocatalytic materials with tailored electronic properties and wettability.
基金supported by the National Science Centre of Poland within OPUS 16 Project,no.2018/31/B/ST8/01172。
文摘The sessile drop method was applied to the experimental investigation of the wetting and spreading behaviors of liquid Mg drops on pure Ni substrates.For comparison,the experiments were performed in two variants:(1)using the Capillary Purification(CP)procedure,which allows the non-contact heating and squeezing of a pure oxide-free Mg drop;(2)by classical Contact Heating(CH)procedure.The high-temperature tests were performed under isothermal conditions(CP:760℃for 30 s;CH:715℃for 300 s)using Ar+5 wt%H_(2) atmosphere.During the sessile drop tests,images of the Mg/Ni couples were recorded by CCD cameras(57 fps),which were then applied to calculate the contact angles of metal/substrate couples.Scanning and transmission electron microscopy analyses,both coupled with energy-dispersive X-ray spectroscopy,were used for detailed structural characterization of the solidified couples.It was found that an oxide-free Mg drop obtained by the CP procedure showed a wetting phenomenon on the Ni substrate(an average contact angleθ<90°in<1 s),followed by fast spreading and good wetting over the Ni substrate(θ_((CP))~20°in 5 s)to form a final contact angle ofθ_(f(CP))~18°.In contrast,a different wetting behavior was observed for the CH procedure,where the unavoidable primary oxide film on the Mg surface blocked the spreading of liquid Mg showing apparently non-wetting behavior after 300 s contact at the test temperature.However,in both cases,the deep craters formed in the Ni substrates under the Mg drops and significant change in the structure of initially pure Mg drops to Mg-Ni alloys suggest a strong dissolution of Ni in liquid Mg and apparent values of the final contact angles measured for the Mg/Ni system.
基金the support of the China Manned Space Engineering(YYMT1201-EXP08)。
文摘The infiltration casting method is widely employed for the preparation of ex-situ composite materials.However,the production of composite materials using this method must necessitates a comprehensive understanding of the wettability and interface characteristics between the reinforcing phase and the bulk metallic glasses(BMGs).This work optimized the composition of Zr-based BMGs through microalloying methods,resulting in a new set of Zr-based BMGs with excellent glass-forming ability.Wetting experiments between the Zr-based BMGs melts and W substrates were conducted using the traditional sessile drop method,and the interfaces were characterized utilizing a scanning electron microscope(SEM)equipped with energy dispersive X-ray spectroscopy(EDS).The work demonstrates that the microalloying method substantially enhances the wettability of the Zr-based BMGs melt.Additionally,the incorporation of Nb element impedes the formation of W-Zr phases,but the introduction of Nb element does not alter the extent of interdiffusion between the constituent elements of the amorphous matrix and W element,indicating that the influence of Nb element on the diffusion of individual elements is minute.
基金Supported by the Original Exploration Project of National Natural Science Foundation of China(5215000105)Young Teachers Fund for Higher Education Institutions of Huo Yingdong Education Foundation(171043)。
文摘A simulated oil viscosity prediction model is established according to the relationship between simulated oil viscosity and geometric mean value of T2spectrum,and the time-varying law of simulated oil viscosity in porous media is quantitatively characterized by nuclear magnetic resonance(NMR)experiments of high multiple waterflooding.A new NMR wettability index formula is derived based on NMR relaxation theory to quantitatively characterize the time-varying law of rock wettability during waterflooding combined with high-multiple waterflooding experiment in sandstone cores.The remaining oil viscosity in the core is positively correlated with the displacing water multiple.The remaining oil viscosity increases rapidly when the displacing water multiple is low,and increases slowly when the displacing water multiple is high.The variation of remaining oil viscosity is related to the reservoir heterogeneity.The stronger the reservoir homogeneity,the higher the content of heavy components in the remaining oil and the higher the viscosity.The reservoir wettability changes after water injection:the oil-wet reservoir changes into water-wet reservoir,while the water-wet reservoir becomes more hydrophilic;the degree of change enhances with the increase of displacing water multiple.There is a high correlation between the time-varying oil viscosity and the time-varying wettability,and the change of oil viscosity cannot be ignored.The NMR wettability index calculated by considering the change of oil viscosity is more consistent with the tested Amott(spontaneous imbibition)wettability index,which agrees more with the time-varying law of reservoir wettability.
文摘Inspired by the skin structure,an asymmetric wettability tri-layer nanofiber membrane(TNM)consisting of hydrophilic inner layer loaded with lidocaine hydrochloride(LID),hydrophobic middle layer with ciprofloxacin(CIP)and hydrophobic outer layer has been created.The hydrophobic outer layer endows the TNM with waterproof function and anti-adhesion from contaminants.The hydrophobic middle layer with CIP preserves long-term inhibition of bacteria growth and the hydrophilic inner layer with LID possesses optimal waterabsorbing capacity and air permeability.The TNM dramatically elevates the water contact angles from 10°(inner layer)to 120(outer layer),indicating an asymmetric wettability,which could directionally transport wound exudate within the materials and meanwhile maintain a comfortable and moist environment to promote wound healing.Furthermore,the sequential release of LID and CIP could relieve pain rapidly and achieve antibacterial effect in the long run,respectively.In addition,the TNM shows superior biocompatibility towards L929 cells.The in vivo results show the TNM could prevent infection,accelerate epithelial regeneration and significantly accelerate wound healing.This study indicates the developed TNM with asymmetrical wettability and synergetic drug release shows great potential as a wound dressing in clinical application.
基金supported by National Natural Science Foundation of China(Grant No.42172159)Science Foundation of China University of Petroleum,Beijing(Grant No.2462023XKBH002).
文摘Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the effects of complex pore structures and wettability.To address this issue,based on the digital rock of low permeability sandstone,a direct numerical simulation is performed considering the interphase drag and boundary slip to clarify the microscopic water-oil displacement process.In addition,a dual-porosity pore network model(PNM)is constructed to obtain the water-oil relative permeability of the sample.The displacement efficiency as a recovery process is assessed under different wetting and pore structure properties.Results show that microscopic displacement mechanisms explain the corresponding macroscopic relative permeability.The injected water breaks through the outlet earlier with a large mass flow,while thick oil films exist in rough hydrophobic surfaces and poorly connected pores.The variation of water-oil relative permeability is significant,and residual oil saturation is high in the oil-wet system.The flooding is extensive,and the residual oil is trapped in complex pore networks for hydrophilic pore surfaces;thus,water relative permeability is lower in the water-wet system.While the displacement efficiency is the worst in mixed-wetting systems for poor water connectivity.Microporosity negatively correlates with invading oil volume fraction due to strong capillary resistance,and a large microporosity corresponds to low residual oil saturation.This work provides insights into the water-oil flow from different modeling perspectives and helps to optimize the development plan for enhanced recovery.
基金supported by the National Key Research and Development Program of China(2021YFB3701603)National Science Foundation of China(51973030,52103075)+6 种基金Shanghai Rising-Star Program(20QA1400100)Science and Technology Commission of Shanghai Municipality(20JC1414900)China Postdoctoral Science Foundation(2022M710664,2022T150111)China Postdoctoral Science Foundation(2022M710663)the Fundamental Research Funds for the Central Universities“DHU”Distinguished Young Professor Program(LZB2021001)State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University。
文摘Solar-driven interfacial evaporation is an emerging technology for water desalination.Generally,double-layered structure with separate surface wettability properties is usually employed for evaporator construction.However,creating materials with tunable properties is a great challenge because the wettability of existing materials is usually monotonous.Herein,we report vinyltrimethoxysilane as a single molecular unit to hybrid with bacterial cellulose(BC)fibrous network,which can be built into robust aerogel with entirely distinct wettability through controlling assembly pathways.Siloxane groups or carbon atoms are exposed on the surface of BC nanofibers,resulting in either superhydrophilic or superhydrophobic aerogels.With this special property,single component-modified aerogels could be integrated into a double-layered evaporator for water desalination.Under 1 sun,our evaporator achieves high water evaporation rates of 1.91 and 4.20 kg m^(-2)h^(-1)under laboratory and outdoor solar conditions,respectively.Moreover,this aerogel evaporator shows unprecedented lightweight,structural robustness,long-term stability under extreme conditions,and excellent salt-resistance,highlighting the advantages in synthesis of aerogel materials from the single molecular unit.
基金supported by the National Natural Science Foundation of China(Grant number 42102145,41872148)the Science Foundation of China University of Petroleum,Beijing(Grant number 2462020BJRC005,2462022YXZZ007)+1 种基金AAPG Foundation Grants-in-Aid Program(Grant number 22108817)the Joint Fund of the National Natural Science Foundation of China(Grant number U19B6003-02-04).
文摘Shale contains a lot of clay minerals. Clay minerals mainly exist in nano- and micro-meter sized particles, and the pore structure is complex, which leads to its extremely complex wettability. The surface wettability of clay minerals significantly affects the oil and gas-bearing capacity of shale reservoirs. Therefore, studying the wettability of common clay minerals in shale at the nanoscale is of great significance for shale hydrocarbon exploration and development. In this study, the wetting behavior of water in n-hexane and toluene on different clay mineral surfaces at the nanoscale was systematically studied using Molecular dynamics (MD) simulation. And the influencing factors of wettability were analyzed. Through the analysis of the morphological changes of water, relative concentration of water, RDF and interaction energy, it is concluded that the following order of water wettability on the surfaces of clay minerals: montmorillonite > chlorite > kaolinite > illite. Through the analysis of interaction energy, it is concluded that the hydrophilicity of four clay minerals is stronger than that of lipophilicity. And the main interactions between water and oil and the mineral surfaces were van der Waals force and electrostatic force. In addition, the temperature, liquid hydrocarbon type, and mineralization of water affected the wettability of clay minerals. The concentration of water on the surfaces of montmorillonite, kaolinite, and illite decreased with increasing temperature, and the water wettability decreased. At 298 K, the hydrophilicity of the surfaces of the clay minerals in toluene follows the order montmorillonite > chlorite > kaolinite > illite. The higher the NaHCO3 concentration in water, the weaker the wettability of the clay mineral surfaces to water. By comparing the previous experimental results with the MD simulation results, similar wetting characteristics were obtained, and the reliability of the simulation results was verified. MD simulation was used to explore the water wetting of the surfaces of four clay minerals in a shale reservoir from the micro level. This makes up for the lack of experimental means for clarifying the flow and production mechanisms of shale oil and gas and effectively improves the evaluation technology of shale.
基金the financial supports from National Natural Science Foundation of China(21978250,22208278)Natural Science Foundation of Shandong Province(ZR2020KB013,ZR2020QE211,2019KJC012).
文摘The wall wettability of microchannels plays an important role in the gas-liquid mass transfer dynamics under Taylor flow.In this study,we regulated the contact angle of the wall surface through surface chemical grafting polymerization under controlled experimental conditions.The dynamic changes of CO_(2)bubbles flowing along the microchannel were captured by a high-speed video camera mounted on a stereo microscope,whilst a unit cell model was employed to theoretically investigate the gas-liquid mass transfer dynamics.We quantitatively characterized the effects of wall wettability,specifically the contact angle,on the formation mechanism of gas bubbles and mass transfer process experimentally.The results revealed that the gas bubble velocity,the overall volumetric liquid phase mass transfer coefficients(kLa),and the specific interfacial area(a)all increased with the increase of the contact angle.Conversely,gas bubble length and leakage flow decreased.Furthermore,we proposed a new modified model to predict the gas-liquid two-phase mass transfer performance,based on van Baten’s and Yao’s models.Our proposed model was observed to agree reasonably well with experimental observations.
基金The authors would like to acknowledge the Bu Ali Sina University and the Iran National Science Foundation:INSF,under Grant number of 99031559,for their financial supports.
文摘Surface active ionic liquids (SAILs) are considered as prominent materials in enhanced oil recovery thanks to their high interfacial activity. This study reports the preparation and applications of a nanostructure Tripodal imidazolium SAIL as an environmentally-friendly substitute to the conventional surfactants. The product has a star-like molecular structure centered by a triazine spacer, namely [(C_(4)im)_(3)TA][Cl_(3)], prepared by a one-step synthesis method and characterized with FT-IR, NMR, XRD, and SEM analysis methods. The interfacial tension of the system was decreased to about 78% at critical micelle concentration of less than 0.08 mol·dm^(−3). Increasing temperature, from 298.2 to 323.2 K, improved this capability. The solid surface wettability was changed from oil-wet to water-wet and 80% and 77% stable emulsions of crude oil–aqueous solutions were created after one day and one week, respectively. Compared to the Gemini kind homologous SAILs, the superior effects of the Tripodal SAIL were revealed and attributed to the strong hydrophobic branches in the molecule. The Frumkin adsorption isotherm precisely reproduced the generated IFT data, and accordingly, the adsorption and thermodynamic parameters were determined.
基金Kuwait University General Research Facilities (GE01/17,GE01/07,and GS03/01)for their support in conducting the necessary experimental work of this study。
文摘This study investigated experimentally the coupled effects of hydrophilic SiO_(2) nanoparticles(NPs)and low-salinity water(LSW)on the wettability of synthetic clay-free Berea sandstone.Capillary pressure,interfacial tension(IFT),contact angle,Zeta potential,and dynamic displacement measurements were performed at various NP mass fractions and brine salinities.The U.S.Bureau of Mines(USBM)index was used to quantify the wettability alteration.Furthermore,the NP stability and retention and the effect of enhanced oil recovery by nanofluid were examined.The results showed that LSW immiscible displacement with NPs altered the wettability toward more water wet.With the decreasing brine salinity and increasing NP mass fraction,the IFT and contact angle decreased.The wettability alteration intensified most as the brine salinity decreased to 4000 mg/L and the NP mass fraction increased to 0.075%.Under these conditions,the resulting incremental oil recovery factor was approximately 13 percentage points.When the brine salinity was 4000 mg/L and the NP mass fraction was 0.025%,the retention of NPs caused the minimum damage to permeability.
基金the National Natural Science Foundation of China(Grant No.42004105)Natural Science General Program of the Higher Education Institutions of Jiangsu Province(Grant No.20KJD430002)+1 种基金Foundation of Changzhou Institute of Technology(YN20025)College student innovation and entrepreneurship training program(202211055012Z and 202211055067X).
文摘The wettability of reservoir rocks saturated with oil and water is one of the most important factors influencing petrophysics and oil recovery.Minerals with different wettability constitute the overall heterogeneous wettability in rocks.Variations in sample composi-tion can be detected by nuclear magnetic resonance(NMR)measurements.In this paper,the method of using the magnetic susceptibility contrast between rock skeleton and saturated fluid to estimate wettability is proposed.The theoretical feasibility was firstly analyzed,and then the internal gradients caused by magnetic susceptibility contrasts were employed to interpret wettability alteration before and after ageing process in rocks.It was discovered that water and oil in the same pores experienced different internal gradients after ageing,which were associated with the differences in magnetic susceptibility con-trasts.After that,the free induction decay measurement was performed to acquire mag-netic susceptibility contrasts of artificial sandstone samples with the intermediate-wet condition.A refined NMR wettability index was presented and correlated with the Amott wettability tests.The experimental results demonstrate that the new method for deter-mining wettability is feasible.
基金the financial support from Baker Hughes Company and the U.S.National Science Foundation(NSF CAREER Award 1351296).
文摘The wettability of rocks affects the balance between capillary and viscous forces during multiphase flow through porous media,which in turn determines the fluid displacement process governing the recovery of oil from subsurface formations.In this work,the mechanism of wettability reversal of aged synthetic sandstones by metal oxide nanoparticles(SiO_(2) and Al_(2)O_(3))was investigated with particular focus on the impact of surface roughness,zeta potential,and temperature.The synthetic surfaces were prepared from powders of Berea sandstone with known grain size ranges and their average roughness and roughness ratio were obtained from the 3D surface reconstruction of their microscope images.Each surface was subsequently aged in Permian crude oil to alter its wettability.For surfaces with larger grain sizes and lower surface roughness ratios,the lower capillary pressure allowed stronger oil/surface interactions,leading to enhanced oil-wetness.The wettability alteration effects of nanoparticles were then examined through real-time top view imaging and dynamic front view contact angle experiments.The negatively charged SiO_(2) nanoparticles rapidly reversed the sandstone wettability,indicating their potential applicability as wettability alteration agents.By contrast,the positively charged Al_(2)O_(3) counterpart caused no wettability reversal.The mechanism of wettability alteration was further studied by microscale interaction analyses and nanoscale transmission electron microscopy.Because nanoparticles were only a few nanometers large,the microscale roughness had a negligible effect on the wettability reversal.Instead,the combined effect of van der Waals dispersion forces and surface-charge-induced electrostatic forces were recognized as the two key factors affecting the wettability of sandstone particles.Such interactions may be curbed at elevated temperatures due to a decrease in the zeta potential and colloidal stability of the particles.
基金This work is funded by the National Natural Science Foundation of China(Grant No.21776306).
文摘Wettability is an important surface property that deserves to further explore the factors on its alteration.Series of bis-N-heterocyclic quaternary ammonium salts with different spacer length and N-heterocyclic headgroups(morpholinium(BMMB,BMMD and BMMH),piperidinium(BPMH)and piperazinium(BMPMH))have been synthesized and employed for altering the wettability of vermiculite and its derivates(Vts)treated by Li^(+)-saturated heating method.The results of X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),thermogravimetric analysis(TG-DTG),scanning electron microscopy(SEM)and N_(2)adsorption/desorption isotherms indicate that all of the bis-N-heterocyclic quaternary ammonium salts have been successfully inserted into the vermiculite layers,leading to the organic monolayer.The results of capillary rise tests combined with Lipophilic to Hydrophilic Ratio(LHR)values unveil the wettability alteration of the organo-Vts.As the layer charge decreases,the hydrophilicity of the organo-Vts gradually increases,which is probably caused by the decline in binding sites.As the result of the change in spacer length of modifier,the wetting properties of morpholinium-based organo-Vts change in order of BMMD-Vts>BMMH-Vts>BMMB-Vts,and difference in N-heterocyclic headgroups leads to the sequence of wettability:BMPMH-Vts>BPMH-Vts>BMMH-Vts.Layer charge of Vt,spacer length and the type of the N-heterocyclic headgroup of modifier have the synergistic effect on the regulation of the wettability.
基金We gratefully acknowledge the financial support from National Key Research and Development Project,China(2019YFA0708700)the National Natural Science Foundation of China(52222403,52074333)the Innovation Fund Project for graduate students of China University of Petroleum(East China)(22CX04049A).
文摘The membrane method based on adaptive wettability shows great advantages in oil-water separation.At present,researches focus on the excellent application performance of the membrane material,while the quantitative analysis of interactions in oil-water separation is rarely recognized.Herein,we constructed an adaptable wettability membrane with multiple polymer networks by polydopamine(PDA)and mussel-inspired amphiphilic polymer.Based on the Owens three-probe liquid method,the surface energy of the modified membrane was verified to meet the adaptive wettability conditions,with surface energies(γ-8)of 147.6 mJ m^(−2)(superhydrophilic/underwater superoleophobic)and 49.87 mJ m^(−2)(superhydrophobic/superoleophobic),respectively.The adhesion or repulsion of the membrane to the oil phase under different conditions during the separation process was quantified by the chemical probe AFM technique.In addition,the oil-water selective separation mechanism was further analyzed in a simplified membrane microchannel model.The results show that the different wetting produces capillary additional pressure in opposite directions,resulting in different energies to be overcome when the oil or water passes through the microchannels,thus achieving selective separation.
基金Supported by the National Natural Scienceof China(42072161,41821002)Central University Basic Research Project(22CX07008A)。
文摘The control of micro-wettability of pore-throat on shale oil occurrence in different types of reservoir spaces remains unclear.Take the shale oil reservoir of the Permian Lucaogou Formation in the Jimusar Sag,Junggar Basin as an example,the reservoir space in laminated shale and the control of micro-wettability of pore-throat on shale oil occurrence were studied by using scanning electron microscope(SEM),multi-stage pyrolysis,quantitative fluorescence,nuclear magnetic resonance(NMR)and other techniques.The results show that there are mainly two types of laminated shale in the Lucaogou Formation,namely laminated shale rich in volcanic materials+terrigenous felsic,and laminated shale rich in volcanic materials+carbonate.The former type contains feldspar dissolution pores and intergranular pores,mainly with felsic mineral components around the pore-throats,which are water-wet and control the free shale oil.The latter type contains carbonate intercrystalline pores and organic pores,mainly with oil-wet mineral components around the pore-throats,which control the adsorbed shale oil.The oil-wet mineral components around the pore-throats are conducive to oil accumulation,but reduce the proportion of free oil.In the Lucaogou Formation,free oil,with high maturity and light quality,mainly occurs in the laminated shale rich in volcanic materials+terrigenous felsic.
文摘This study used the diethylene triamine pentaacetic acid(DTPA)-seawater(SW)system to modify the sandstone rock wettability and enhance oil recovery.The investigation involved conducting wettability measurement,Zeta potential measurement,and spontaneous imbibition experiment.The introduction of 5%DTPA-sW solution resulted in a significant decrease in the rock-oil contact angle from 143°to 23,along with a reduction in the Zeta potential from-2.29 mV to-13.06 mV,thereby altering the rock surface charge and shifting its wettability from an oil-wet state to a strongly water-wet state.The presence or absence of potential determining ions(Ca^(2+),Mg^(2+),SO_(4)^(2-))in the solution did not impact the effectiveness of DTPA in changing the rock wettability.However,by tripling the concentration of these ions in the solution,the performance of 5%DTPA-SW solution in changing wettability was impaired.Additionally,spontaneous imbibition tests demonstrated that the 5%DTPA-SW solution led to an increase in oil recovery up to 39.6%.Thus,the optimum mass fraction of DTPA for changing sandstone wettability was determined to be5%.
基金funded by the Key Research and Development Program of Jiangsu Province(BE2021340)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(21KJB210019)+3 种基金the Jiangsu Postdoctoral Science Foundation(2021K614C)the Key Laboratory of Modern Agricultural Equipment and Technology,Jiangsu University(MAET202119)the Project of Postgraduate Innovation of Jiangsu Province(KYCX22_3683)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD-2018-87).
文摘The wettability of leaf surface,commonly represented by contact angle(CA),affects various physiological and physical processes.The present study aims to better understand the wettability of tea leaves and elucidate its influence on the energy barrier of the droplet condensation process.The CA values of different leaf ages(young,mature and old)of five famous tea cultivars(Maolu,longjing 43,Huangjinya,Zhongcha 108 and Anji Baicha)were measured via the sessile drop method,and the micro-morphology of two cultivars leaves(Maolu,Zhongcha 108)was investigated by a 3D super depth-of-field digital microscope.Specifically,two radically distinctive types of CA trends were observed,one was the decreased firstly and then increased slightly with the increase of leaf age,while the other stayed constant.The valley depth or maximum height(RZ)of Maolu leaf surface increased with the leaf age while the RZ of Zhongcha 108 leaf remained unchanged by comparing the microscopic features.The Maolu mature leaf CA decline attributed to the young leaf was hydrophilic(θ<90°),and it was considered that surface structures like folds and pits on old leaf played a crucial role in making CA increased.Small deviation in CA can lead to significant error in calculation of the contact angle function of energy barrier in phase change.It will have great significant for simulating and better understanding the formation of frost on tea leaves.
基金supported by the Creative Groups of Natural Science Foundation of Hubei Province,China(Grant No.2021CFA030)the National Natural Science Foundation of China(Grant Nos.41872210 and 41274111).
文摘The threshold values of CO_(2) gas stripped off membranous residual oil from the pore walls are not clear under different temperatures, pressures and wettability conditions. The extent to which temperature, pressure and wettability influence CO_(2) flooding for enhancing the recovery of residual oil in membranous formations also remains uncertain. Therefore, further quantitative characterization is entailed. In this study, the molecular dynamics method was employed to explore CO_(2) flooding under different temperatures, pressures and wettability conditions, aiming to enhance the production of membranous residual oil. The results reveal that the interaction energy between CO_(2), decane molecules and pore walls exhibits a decrease with increasing temperature and an increase with increasing pressure, respectively, in distinct wettability scenarios. When the temperature was at or below 363 K and the pressure was not lower than 40 MPa, CO_(2) gas could detach the membranous residual oil from the pore walls in the water-wet systems. When the temperature was equal to 363 K and the pressure remained under 40 MPa, or the temperature surpassed 363 K, CO_(2) gas failed to detach the membranous residual oil from the pore walls in the water-wet systems. For the mixed-wet and oil-wet systems, CO_(2) molecules could not detach the membranous residual oil from the pore walls. The hierarchy of influence regarding temperature, pressure and wettability on the competitive adsorption capacity of CO_(2) and decane molecules on the pore walls emerged as follows: wettability > temperature > pressure. The findings of this study offer valuable insights into the application of CO_(2) gas flooding for the exploitation of membranous residual oil on pore walls.