[目的]蓖麻(Ricinus communis L.)是一种重要的工业油料作物。为了鉴定蓖麻WRI1(WRINKLED1)转录因子,搞清蓖麻种子油脂生物合成调控机制。[方法]利用生物信息学工具全基因组鉴定蓖麻RcWRI1蛋白及基因,分析蓖麻RcWRI1蛋白结构特征和功能...[目的]蓖麻(Ricinus communis L.)是一种重要的工业油料作物。为了鉴定蓖麻WRI1(WRINKLED1)转录因子,搞清蓖麻种子油脂生物合成调控机制。[方法]利用生物信息学工具全基因组鉴定蓖麻RcWRI1蛋白及基因,分析蓖麻RcWRI1蛋白结构特征和功能;应用qPCR检测蓖麻RcWRI1基因表达谱。[结果]鉴定获得2种蓖麻RcWRI1蛋白,即RcWRI1-1(446AA)和RcWRI1-2(443AA),均为蓖麻RcWRI1基因(LOC8283400)编码的产物。与拟南芥AtWRI1相似,RcWRI1-1和RcWRI1-2都具有2个高度保守AP2结构域,属不稳定的亲水蛋白,预测其具有调控脂肪酸代谢等功能。RcWRI1-1和RcWRI1-2在蓖麻花、叶、种子和果皮均表达,RcWRI1-1的表达量明显高于RcWRI1-2,且在种子中表达量最高。[结论]蓖麻RcWRI1基因编码两种RcWRI1蛋白(RcWRI1-1和RcWRI1-2),其中RcWRI1-1是主要表达者,在蓖麻叶、花、种子和果皮油脂合成中起重要调控作用。本研究可为种子油脂生物合成调控机制提供理论基础。展开更多
Among APETALA2 (AP2)-type plant specific transcription factor family, WRINKLED1 (WRI1), has appeared to be a master gene transcriptionally regulating a set of carbon metabolism- and fatty acid synthesis (FAS)-related ...Among APETALA2 (AP2)-type plant specific transcription factor family, WRINKLED1 (WRI1), has appeared to be a master gene transcriptionally regulating a set of carbon metabolism- and fatty acid synthesis (FAS)-related genes responsible for seed specific triacylglycerols (TAGs) storage in oil plants. B3 type transcription factors, such as ABI3 and FUS3, are known to be involved in seed development, such as seed storage protein synthesis and maturation. Based on the recent whole genome sequence data of castor bean (Ricinus communis L.), putative WRI1 homologs (RcWRI1, RcWRI2) specifically expressed in castor bean seed have been identified by comparing organ specific expression profiles among seed development-related transcription factors, seed storage specific genes (Ricin, RcOleosin) and a set of FAS genes including genes for sucrose synthase (RcSUS2), biotin carboxyl carrier protein (a subunit of acetyl-CoA carboxylase, RcBCCP2) and ketoacyl-acyl carrier protein synthase (RcKAS1). Immunoreactive signals with WRI1, FUS3 and ABI5-related polypeptides were also detected in seed specifically, consistent with the expression profiles of seed development-related genes. The WRI1 binding consensus sites, [CnTnG](n)(7)[CG], designated as the AW-box, were found at the promoter region of RcBCCP2 and RcKAS1. Thus, RcWRI1 possibly play a pivotal role in seed specific TAGs storage during seed development by directly activating FAS -related genes.展开更多
Pumilio RNAbindingproteinsparticipateinmes-senger RNA(mRNA)degradation and t ranslational repression,but their roles in plant development are largely unclear.Here,we show that Arabidopsis PUMILIO PROTEIN24(APUM24),an ...Pumilio RNAbindingproteinsparticipateinmes-senger RNA(mRNA)degradation and t ranslational repression,but their roles in plant development are largely unclear.Here,we show that Arabidopsis PUMILIO PROTEIN24(APUM24),an atypical Pumiliohomology domaincontaining protein,plays an im-portant part in regulating seed maturation,a major stage of plant development.APUM24 is strongly expressed in maturing seeds.Reducing APUM24 expression resulted in abnormal seed maturation,wrinkled seeds,and lower seed oil contents,and APUM24 knockdown resulted in lower levels of WRINKLED 1(WRI1),a key transcription factor con-trolling seed oil accumulation,and lower expression of WRI1 target genes.APUM24 reduces the mRNA stability of BTB/POZMATH(BPM)family genes,thus decreasing BPM protein levels.BPM is responsible for the 26S proteasomemediated degradation of WRI1 and has important functions in plant growth and development.The 3′untranslated regions of BPM family genes contain putative Pumilio response elements(PREs),which are bound by APUM24.Re-duced BPM or increased WRI1 expression rescued the decient seed maturation of apum242 knock-down mutants,and APUM24 overexpression re-sulted in increased seed size and weight.Therefore,APUM24 is crucial to seed maturation through its action as a positive regulatornetuning the BPMWRI1 module,making APUM24 apromising target for breeding strategies to increase crop yields.展开更多
文摘[目的]蓖麻(Ricinus communis L.)是一种重要的工业油料作物。为了鉴定蓖麻WRI1(WRINKLED1)转录因子,搞清蓖麻种子油脂生物合成调控机制。[方法]利用生物信息学工具全基因组鉴定蓖麻RcWRI1蛋白及基因,分析蓖麻RcWRI1蛋白结构特征和功能;应用qPCR检测蓖麻RcWRI1基因表达谱。[结果]鉴定获得2种蓖麻RcWRI1蛋白,即RcWRI1-1(446AA)和RcWRI1-2(443AA),均为蓖麻RcWRI1基因(LOC8283400)编码的产物。与拟南芥AtWRI1相似,RcWRI1-1和RcWRI1-2都具有2个高度保守AP2结构域,属不稳定的亲水蛋白,预测其具有调控脂肪酸代谢等功能。RcWRI1-1和RcWRI1-2在蓖麻花、叶、种子和果皮均表达,RcWRI1-1的表达量明显高于RcWRI1-2,且在种子中表达量最高。[结论]蓖麻RcWRI1基因编码两种RcWRI1蛋白(RcWRI1-1和RcWRI1-2),其中RcWRI1-1是主要表达者,在蓖麻叶、花、种子和果皮油脂合成中起重要调控作用。本研究可为种子油脂生物合成调控机制提供理论基础。
文摘Among APETALA2 (AP2)-type plant specific transcription factor family, WRINKLED1 (WRI1), has appeared to be a master gene transcriptionally regulating a set of carbon metabolism- and fatty acid synthesis (FAS)-related genes responsible for seed specific triacylglycerols (TAGs) storage in oil plants. B3 type transcription factors, such as ABI3 and FUS3, are known to be involved in seed development, such as seed storage protein synthesis and maturation. Based on the recent whole genome sequence data of castor bean (Ricinus communis L.), putative WRI1 homologs (RcWRI1, RcWRI2) specifically expressed in castor bean seed have been identified by comparing organ specific expression profiles among seed development-related transcription factors, seed storage specific genes (Ricin, RcOleosin) and a set of FAS genes including genes for sucrose synthase (RcSUS2), biotin carboxyl carrier protein (a subunit of acetyl-CoA carboxylase, RcBCCP2) and ketoacyl-acyl carrier protein synthase (RcKAS1). Immunoreactive signals with WRI1, FUS3 and ABI5-related polypeptides were also detected in seed specifically, consistent with the expression profiles of seed development-related genes. The WRI1 binding consensus sites, [CnTnG](n)(7)[CG], designated as the AW-box, were found at the promoter region of RcBCCP2 and RcKAS1. Thus, RcWRI1 possibly play a pivotal role in seed specific TAGs storage during seed development by directly activating FAS -related genes.
基金supported by the National Natural Science Foundation of China(31870301,31370350 for S.Z.,31871222 for C.Y.)the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2016 for S.Z.)the award from the Program for Changjiang Scholars(2017 for C.Y.).
文摘Pumilio RNAbindingproteinsparticipateinmes-senger RNA(mRNA)degradation and t ranslational repression,but their roles in plant development are largely unclear.Here,we show that Arabidopsis PUMILIO PROTEIN24(APUM24),an atypical Pumiliohomology domaincontaining protein,plays an im-portant part in regulating seed maturation,a major stage of plant development.APUM24 is strongly expressed in maturing seeds.Reducing APUM24 expression resulted in abnormal seed maturation,wrinkled seeds,and lower seed oil contents,and APUM24 knockdown resulted in lower levels of WRINKLED 1(WRI1),a key transcription factor con-trolling seed oil accumulation,and lower expression of WRI1 target genes.APUM24 reduces the mRNA stability of BTB/POZMATH(BPM)family genes,thus decreasing BPM protein levels.BPM is responsible for the 26S proteasomemediated degradation of WRI1 and has important functions in plant growth and development.The 3′untranslated regions of BPM family genes contain putative Pumilio response elements(PREs),which are bound by APUM24.Re-duced BPM or increased WRI1 expression rescued the decient seed maturation of apum242 knock-down mutants,and APUM24 overexpression re-sulted in increased seed size and weight.Therefore,APUM24 is crucial to seed maturation through its action as a positive regulatornetuning the BPMWRI1 module,making APUM24 apromising target for breeding strategies to increase crop yields.