As a natural macromolecular organic compound,humic acid can promote plant growth.Water soluble humic acid fertilizers refer to liquid or solid water soluble fertilizers made by adding appropriate amounts of nitrogen,p...As a natural macromolecular organic compound,humic acid can promote plant growth.Water soluble humic acid fertilizers refer to liquid or solid water soluble fertilizers made by adding appropriate amounts of nitrogen,phosphorus,potassium macroelements or zinc,boron,iron,molybdenum,manganese,copper and other trace elements or organic matter,based on humic acid in the required proportions for plant growth.In order to verify the application effect of humic acid containing water soluble fertilizer produced by Tai’an Gold Land Chemical Co.,Ltd.,in tomato production in Daiyue District,Tai’an City,a fertilizer effect application experiment of humic acid containing water soluble fertilizer on tomato planting was specially carried out.The results showed that the water soluble fertilizer containing humic acid could obviously improve the agronomic characters of tomato;the yield was significantly increased;the effect of increasing the income of tomato growers was obvious.展开更多
We analyzed the amino acid residues present in the water-soluble and transmembrane proteins of 6 thermophilic and 6 mesophilic species of the domains Archaea and Eubacteria, and characterized them as favorable or unfa...We analyzed the amino acid residues present in the water-soluble and transmembrane proteins of 6 thermophilic and 6 mesophilic species of the domains Archaea and Eubacteria, and characterized them as favorable or unfavorable. The characterization was performed by comparing the observed number of each amino acid residue to the expected number calculated from the percentage of nucleotides present in each gene. Amino acids that were more or less abundant than expected were considered as favorable or unfavorable, respectively. Comparisons of amino acid compositions indicated that the water-soluble proteins were rich in charged residues such as Glu, Asp, Lys, and His, whereas hydrophobic residues such as Trp, Phe, and Leu were abundant in transmembrane proteins. Interestingly, our results found that although the Trp residue was abundant in transmembrane proteins, it was not defined as favorable by our calculations, indicating that increased numbers of a particular amino acid does not necessary indicate it is a favorable residue. Amino acids with high G + C content such as Ala, Gly, and Pro were frequently observed as favorable in species with low G + C content. Comparatively, amino acids with low G + C content such as Phe, Tyr, Lys, Ile, and Met were frequently observed as favorable in species with high G + C content. These are the examples to increase the supply of amino acids than expected. Amino acids with neutral G + C content, i.e., Glu and Asp were favorable in water-soluble proteins from all species analyzed, and Cys was unfavorable both in water-soluble and transmembrane proteins. These results indicate that amino acid compositions are essentially determined by the nucleotide sequence of the genes, and the amino acid content is altered by a deviation from expectation.展开更多
The amino acids and the volatile substances in grapes and wines play important roles in their quality,and the concentrations of these substances can be changed by how a vineyard is managed,e.g.,irrigation and fertigat...The amino acids and the volatile substances in grapes and wines play important roles in their quality,and the concentrations of these substances can be changed by how a vineyard is managed,e.g.,irrigation and fertigation regimes.This study aimed to evaluate the effect of fertilizer and water management on the distribution of amino acids,the volatile component profiles,and the sensory characteristics of Cabernet Sauvignon grapes and wines.The results showed that the amino acid concentration in grape berries was the highest under the 100%local fertilizer rate(HF)and 100%water irrigation quota(HW)treatment,and the volatile component concentration in wine was the highest under HF and 80%water irrigation quota(MW)treatment.The effect of irrigation on the amino acid content in grapes was greater than that of fertigation.The synergistic effect of fertilizer and water on arginine,serine,and glutamine in grape berries was significant.The interactive effect of fertigation and irrigation on the volatile substance in grapes was greater than that of fertigation and irrigation alone.The influence of irrigation on volatile substances in wines was greater than that of fertigation.In addition,there was also a correlation between the concentrations of multiple amino acids in grapes and volatile components in wines.Principal component analysis showed that the wine from the HFMW treatment had the best quality among all treatments.展开更多
毛豆,又称菜用大豆(Glycine max L.),其味道鲜香营养价值高,是一种重要的豆科蔬菜。在减施化肥条件下,腐殖酸作为替代化肥的有机肥料的最佳选择之一。本试验探讨腐殖酸水溶肥对毛豆生长的影响,用早熟毛豆品种沪宁95-1毛豆作为试验材料,...毛豆,又称菜用大豆(Glycine max L.),其味道鲜香营养价值高,是一种重要的豆科蔬菜。在减施化肥条件下,腐殖酸作为替代化肥的有机肥料的最佳选择之一。本试验探讨腐殖酸水溶肥对毛豆生长的影响,用早熟毛豆品种沪宁95-1毛豆作为试验材料,设置3次重复,分析0 g/L(T0),1 g/L(T1),2 g/L(T2)腐殖酸水溶肥浓度下对毛豆的发芽率、株高、叶绿素等含量的影响。结果表明,T1处理的发芽率比对照增加了15.0%,T1和T2处理的株高分别比对照增加了12.8%和6.8%,其中,T1处理有显著性促进效果;T1处理单株荚数、单株荚重和百粒重均显著高于对照,分别比对照增加42.3%、48.6%和20.7%。叶绿素含量和对照相比分别增加了12.7%和6.7%;T1和T2处理均显著性地促进了可溶性糖含量,分别增加了35.3%和63.5%。结果显示,施加1 g/L浓度的腐殖酸水溶肥可以提高毛豆的发芽率、株高、叶绿素含量和可溶性糖含量。展开更多
文摘As a natural macromolecular organic compound,humic acid can promote plant growth.Water soluble humic acid fertilizers refer to liquid or solid water soluble fertilizers made by adding appropriate amounts of nitrogen,phosphorus,potassium macroelements or zinc,boron,iron,molybdenum,manganese,copper and other trace elements or organic matter,based on humic acid in the required proportions for plant growth.In order to verify the application effect of humic acid containing water soluble fertilizer produced by Tai’an Gold Land Chemical Co.,Ltd.,in tomato production in Daiyue District,Tai’an City,a fertilizer effect application experiment of humic acid containing water soluble fertilizer on tomato planting was specially carried out.The results showed that the water soluble fertilizer containing humic acid could obviously improve the agronomic characters of tomato;the yield was significantly increased;the effect of increasing the income of tomato growers was obvious.
文摘We analyzed the amino acid residues present in the water-soluble and transmembrane proteins of 6 thermophilic and 6 mesophilic species of the domains Archaea and Eubacteria, and characterized them as favorable or unfavorable. The characterization was performed by comparing the observed number of each amino acid residue to the expected number calculated from the percentage of nucleotides present in each gene. Amino acids that were more or less abundant than expected were considered as favorable or unfavorable, respectively. Comparisons of amino acid compositions indicated that the water-soluble proteins were rich in charged residues such as Glu, Asp, Lys, and His, whereas hydrophobic residues such as Trp, Phe, and Leu were abundant in transmembrane proteins. Interestingly, our results found that although the Trp residue was abundant in transmembrane proteins, it was not defined as favorable by our calculations, indicating that increased numbers of a particular amino acid does not necessary indicate it is a favorable residue. Amino acids with high G + C content such as Ala, Gly, and Pro were frequently observed as favorable in species with low G + C content. Comparatively, amino acids with low G + C content such as Phe, Tyr, Lys, Ile, and Met were frequently observed as favorable in species with high G + C content. These are the examples to increase the supply of amino acids than expected. Amino acids with neutral G + C content, i.e., Glu and Asp were favorable in water-soluble proteins from all species analyzed, and Cys was unfavorable both in water-soluble and transmembrane proteins. These results indicate that amino acid compositions are essentially determined by the nucleotide sequence of the genes, and the amino acid content is altered by a deviation from expectation.
基金the S&T Program of Hebei,China(Grant No.20327001D)the leading Talent Project of Science and Technology Innovation in Ningxia Hui Autonomous Region(Grant No.2022GKLRLX07).
文摘The amino acids and the volatile substances in grapes and wines play important roles in their quality,and the concentrations of these substances can be changed by how a vineyard is managed,e.g.,irrigation and fertigation regimes.This study aimed to evaluate the effect of fertilizer and water management on the distribution of amino acids,the volatile component profiles,and the sensory characteristics of Cabernet Sauvignon grapes and wines.The results showed that the amino acid concentration in grape berries was the highest under the 100%local fertilizer rate(HF)and 100%water irrigation quota(HW)treatment,and the volatile component concentration in wine was the highest under HF and 80%water irrigation quota(MW)treatment.The effect of irrigation on the amino acid content in grapes was greater than that of fertigation.The synergistic effect of fertilizer and water on arginine,serine,and glutamine in grape berries was significant.The interactive effect of fertigation and irrigation on the volatile substance in grapes was greater than that of fertigation and irrigation alone.The influence of irrigation on volatile substances in wines was greater than that of fertigation.In addition,there was also a correlation between the concentrations of multiple amino acids in grapes and volatile components in wines.Principal component analysis showed that the wine from the HFMW treatment had the best quality among all treatments.