期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
Improving the electrochemical performance of α-MoO_(3) electrode using aluminium trifluoromethanesulfonate water-in-salt electrolyte
1
作者 Ayman E.Elkholy Timothy T.Duignan +1 位作者 Ruth Knibbe Xiu Song Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期123-134,I0004,共13页
Orthorhombic molybdenum trioxide(α-MoO_(3)) electrode material experiences severe capacity fading and poor cycling stability in aqueous electrolytes.We investigated the charge-storage performance of α-MoO_(3) electr... Orthorhombic molybdenum trioxide(α-MoO_(3)) electrode material experiences severe capacity fading and poor cycling stability in aqueous electrolytes.We investigated the charge-storage performance of α-MoO_(3) electrode in aluminium trifluoromethanesulfonate(Al(OTf)_(3))-based salt-in-water electrolyte(SiWE) and water-in-salt electrolyte(WiSE).It was found that α-MoO_(3) electrode exhibits significantly different cycling stabilities in both electrolytes with capacity retentions of 8% using the former and87% using the latter.This is because α-MoO_(3) electrode maintains its crystal structure upon cycling in WiSE,but experiences substantial structural collapses and partial dissolution upon cycling in SiWE.This behaviour was inferred from both operando electrogravimetry and ex situ analyses.Research results suggest that the predominant charge-storage mechanism in a-MoO_(3) electrode using WiSE is the intercalation of protons produced from electrolyte hydrolysis with some contribution from surface pseudocapacitance enabled by Al3+ions.A two-volt full cell fabricated from α-MoO_(3) electrode as anode and copper hexacyanoferrate(CuHCF) electrode as cathode using WiSE delivers volumetric and gravimetric energies of 10.4 Wh/L and 26.5 Wh/kg,respectively,with 78% capacity retention after 2500 cycles.This study provides an insightful understanding of the electrochemical performance of α-MoO_(3) electrode in Al(OTf)_(3)-based electrolytes. 展开更多
关键词 Molybdenum oxide Aqueous electrolyte water-in-salt electrolyte Aqueous batteries PSEUDOCAPACITANCE
下载PDF
A strategic way of high-performance energy storage device development with environmentally viable “Water-in-salt” electrolytes
2
作者 Prakas Samanta Souvik Ghosh +3 位作者 Aniruddha Kundu Pranab Samanta Naresh Chandra Murmu Tapas Kuila 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期350-373,I0010,共25页
Development of cost-effective and environmental friendly energy storage devices(ESDs) has attracted widespread attention in recent scenario of energy research.Recently,the environmentally viable "water-in-salt&qu... Development of cost-effective and environmental friendly energy storage devices(ESDs) has attracted widespread attention in recent scenario of energy research.Recently,the environmentally viable "water-in-salt"(WiS) electrolytes has received significant interest for the development of advanced high performance ESDs.The WiS electrolyte exhibits wide electrochemical stability window(ESW),highsafety,non-flammability and superior electrochemical performance compared to the conventional "salt-in-water" electrolytes.This review aims to provide a comprehensive discussion on WiS electrolyte based on theoretical,electrochemical and physicochemical characteristics.A strategic way for the usage of WiS electrolyte in rechargeable metal-ion batteries and supercapacitors with potentially improved electrochemical performance has been reviewed systematically.This review also discussed the unique advantages of WiS electrolytes as well as the future scope and challenges. 展开更多
关键词 water-in-salt electrolyte Solid electrolyte interphase High energy density Aqueous batteries Aqueous supercapacitors
下载PDF
Paper-based aqueous Al ion battery with water-in-salt electrolyte
3
作者 Yifei Wang Wending Pan +4 位作者 Kee Wah Leong Yingguang Zhang Xiaolong Zhao Shijing Luo Dennis Y.C.Leung 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第5期1380-1388,共9页
Low-cost,flexible and safe battery technology is the key to the widespread usage of wearable electronics,among which the aqueous Al ion battery with water-in-salt electrolyte is a promising candidate.In this work,a fl... Low-cost,flexible and safe battery technology is the key to the widespread usage of wearable electronics,among which the aqueous Al ion battery with water-in-salt electrolyte is a promising candidate.In this work,a flexible aqueous Al ion battery is developed using cellulose paper as substrate.The water-in-salt electrolyte is stored inside the paper,while the electrodes are either printed or attached on the paper surface,leading to a lightweight and thin-film battery prototype.Currently,this battery can tolerate a charge and discharge rate as high as 4 A g^(-1) without losing its storage capacity.The charge voltage is around 2.2 V,while the discharge plateau of 1.6–1.8 V is among the highest in reported aqueous Al ion batteries,together with a high discharge specific capacity of~140 mAh g^(-1).However,due to the water electrolysis side reaction,the faradaic efficiency can only reach 85%with a cycle life of 250 due to the dry out of electrolyte.Benefited from using flexible materials and aqueous electrolyte,this paper-based Al ion battery can tolerate various deformations such as bending,rolling and even puncturing without losing its performance.When two single cells are connected in series,the battery pack can provide a charge voltage of 4.3 V and a discharge plateau as high as 3–3.6 V,which are very close to commercial Li ion batteries.Such a cheap,flexible and safe battery technology may be widely applied in low-cost and large-quantity applications,such as RFID tags,smart packages and wearable biosensors in the future. 展开更多
关键词 Al ion battery Aqueous electrolyte water-in-salt Paper battery Flexible battery
下载PDF
Free-Standing α-MoO_(3)/Ti_(3)C_(2) MXene Hybrid Electrode in Water-in-Salt Electrolytes
4
作者 Mohit Saraf Christopher E.Shuck +5 位作者 Nazgol Norouzi Kyle Matthews Alex Inman Teng Zhang Ekaterina Pomerantseva Yury Gogotsi 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期6-14,共9页
While transition-metal oxides such as α-MoO_(3)provide high capacity,their use is limited by modest electronic conductivity and electrochemical instability in aqueous electrolytes.Two-dimensional(2D)MXenes,offer meta... While transition-metal oxides such as α-MoO_(3)provide high capacity,their use is limited by modest electronic conductivity and electrochemical instability in aqueous electrolytes.Two-dimensional(2D)MXenes,offer metallic conductivity,but their capacitance is limited in aqueous electrolytes.Insertion of partially solvated cations into Ti_(3)C_(2)MXene from lithium-based water-in-salt(WIS)electrolytes enables charge storage at positive potentials,allowing a wider potential window and higher capacitance.Herein,we demonstrate that α-MoO_(3)/Ti_(3)C_(2)hybrids combine the high capacity of α-MoO_(3)and conductivity of Ti_(3)C_(2)in WIS(19.8 m LiCI)electrolyte in a wide1.8 V voltage window.Cyclic voltammograms reveal multiple redox peaks from α-MoO_(3)in addition to the well-separated peaks of Ti_(3)C_(2)in the hybrid electrode.This leads to a higher specific charge and a higher rate capability compared to a carbon and binder containing α-MoO_(3)electrode.These results demonstrate that the addition of MXene to less conductive oxides eliminates the need for conductive carbon additives and binders,leads to a larger amount of charge stored,and increases redox capacity at higher rates.In addition,MXene encapsulated α-MoO_(3)showed improved electrochemical stability,which was attributed to the suppressed dissolution of α-MoO_(3).The work suggests that oxide/MXene hybrids are promising for energy storage. 展开更多
关键词 free-standing electrode Ti_(3)C_(2)MXene water-in-salt electrolytes α-MoO_(3)nanobelts
下载PDF
Water-in-salt锂离子电解液研究进展 被引量:5
5
作者 周安行 蒋礼威 +5 位作者 岳金明 索鎏敏 胡勇胜 李泓 黄学杰 陈立泉 《储能科学与技术》 CAS CSCD 2018年第6期972-986,共15页
与传统的商用有机锂离子电池相比,水系锂离子电池具有高安全性、成本低、环境友好等优点,但由于水的热力学窗口较窄(1.23 V),从而大大限制了其输出电压和能量密度。Water-in-salt电解液的提出将水溶液的电化学窗口拓宽到3.0V以上,为实... 与传统的商用有机锂离子电池相比,水系锂离子电池具有高安全性、成本低、环境友好等优点,但由于水的热力学窗口较窄(1.23 V),从而大大限制了其输出电压和能量密度。Water-in-salt电解液的提出将水溶液的电化学窗口拓宽到3.0V以上,为实现新型高电压水系锂离子电池提供了有利前提保证。本综述意在介绍Water-in-salt电解液及其相关衍生体系以及其在锂离子电池、锂硫电池以及混合离子电池中的相关应用拓展。与此同时,对该新体系中所引出的新的基础科学问题,包括水系固态电解质界面(SEI)膜的生长机理及锂离子的传输机制做了简单归纳和总结。 展开更多
关键词 water-in-salt 水系锂离子电池 SEI膜 锂离子传输
下载PDF
water-in-salt型电解液在电化学储能器件中的应用
6
作者 郭雨菲 张晓虎 +2 位作者 张卫珂 孙现众 张熊 《电源技术》 CAS 北大核心 2021年第9期1216-1218,共3页
水系电解液由于其安全性高,成本低的优点在电解液市场上具有一定优势,但其受到水的分解电压(1.23 V)限制,导致器件输出电压及能量密度与其他电解液相比仍是短板。近年来,water-in-salt型电解液因其能达到3 V以上的宽电压而广受关注。越... 水系电解液由于其安全性高,成本低的优点在电解液市场上具有一定优势,但其受到水的分解电压(1.23 V)限制,导致器件输出电压及能量密度与其他电解液相比仍是短板。近年来,water-in-salt型电解液因其能达到3 V以上的宽电压而广受关注。越来越多的学者将water-in-salt型电解液应用到不同的电化学器件中,针对近年来water-insalt及其衍生电解液在不同类型器件中的应用以及发展进行了总结与展望。 展开更多
关键词 water-in-salt型电解液 锂离子电池 超级电容器
下载PDF
Water-in-salt电解液研究进展 被引量:1
7
作者 朱佳静 高筠 《储能科学与技术》 CAS CSCD 2020年第S01期13-22,共10页
电解质是电化学能量存储(EES)设备的重要组成部分之一,在器件性能上起着决定性作用。在种类繁多的电解质中,water-in-salt(WIS)电解液凭借独特的溶剂配位能力将水溶液的电化学稳定窗口拓宽到了3.0 V以上,同时具备水系电解液安全、低成... 电解质是电化学能量存储(EES)设备的重要组成部分之一,在器件性能上起着决定性作用。在种类繁多的电解质中,water-in-salt(WIS)电解液凭借独特的溶剂配位能力将水溶液的电化学稳定窗口拓宽到了3.0 V以上,同时具备水系电解液安全、低成本以及绿色环保等优势,未来发展前景十分广阔。综述了国内外关于WIS电解液的最新研究进展,主要从电解质盐、电解质添加剂、WIS电解液在电化学上的应用及面临的问题与挑战四个方面进行了介绍。针对电解质盐着重描述了其中基于磺酰亚胺的几种常见氟化盐和乙酸钾、乙酸钠及乙酸锂等乙酸盐,分析了通过以单一盐或多盐形式配制的WIS电解液对超级电容器和电池的电化学性能的影响。对于引入的电解质添加剂,主要是包括乙腈(AN)、碳酸二甲酯(DMC)及碳酸丙烯酯(PC)等有机溶剂,简单介绍了离子液体和羧甲基纤维素(CMC)作为助溶剂对电极材料性能的提升。WIS电解液的应用主要围绕在一些常规电解质中无法使用或者性能较差的电极材料,还有其衍生出来的solvent-in-salt体系进行说明。最后,提出了目前WIS电解液面临的问题与挑战以及此类电解液的研究方向。 展开更多
关键词 电解液 water-in-salt 超级电容器 电池 电化学性能
下载PDF
Boosting energy-storage capability in carbon-based supercapacitors using low-temperature water-in-salt electrolytes
8
作者 Joao Pedro A.Santos Manuel J.Pinzón +4 位作者 érick A.Santos Rafael Vicentini Cesar J.B.Pagan Leonardo M.Da Silva Hudson Zanin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期521-530,I0013,共11页
Supercapacitors(SCs) are high-power energy storage devices with ultra-fast charge/discharge properties.SCs using concentrated aqueous-based electrolytes can work at low temperatures due to their intrinsic properties, ... Supercapacitors(SCs) are high-power energy storage devices with ultra-fast charge/discharge properties.SCs using concentrated aqueous-based electrolytes can work at low temperatures due to their intrinsic properties, such as higher freezing point depression(FPD) and robustness. Besides the traditional organic-and aqueous-based(salt-in-water) electrolytes used in SCs, water-in-salt(WISE) sodium perchlorate electrolytes offer high FPD, non-flammability, and low-toxicity conditions, allowing the fabrication of safer, environmentally friendly, and more robust devices. For the first time, this work reports a comprehensive study regarding WISE system’s charge-storage capabilities and physicochemical properties under low-temperature conditions(T < 0 ℃) using mesoporous carbon-based electrodes. The effect of temperature reduction on the electrolyte viscosity and electrical properties was investigated using different techniques and the in-situ(or operando) Raman spectroscopy under dynamic polarization conditions.The cell voltage, equivalent series resistance, and specific capacitance were investigated as a function of the temperature. The cell voltage(U) increased ~ 50%, while the specific capacitance decreased ~20%when the temperature was reduced from 25 ℃ to -10 ℃. As a result, the maximum specific energy(E = CU^(2)/2) increased ~ 100%. Therefore, low-temperature WISEs are promising candidates to improve the energy-storage characteristics in SCs. 展开更多
关键词 Carbon supercapacitors water-in-salt electrolytes Low-temperature charge-storage Specific energy improvement at low temperatures
下载PDF
Water-in-salt electrolyte ion-matched N/O codoped porous carbons for high-performance supercapacitors 被引量:6
9
作者 Jingjing Yan Dazhang Zhu +3 位作者 Yaokang Lv Wei Xiong Mingxian Liu Lihua Gan 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第2期579-582,共4页
Pore size and distribution in carbon-based materials are regarded to be a key factor to affect the electrochemical capacitive performances of the resultant electrodes.In this study,nitrogen and oxygen codoped porous c... Pore size and distribution in carbon-based materials are regarded to be a key factor to affect the electrochemical capacitive performances of the resultant electrodes.In this study,nitrogen and oxygen codoped porous carbons(NOPCs) are fabricated based on a simple Schiff-base reaction between m-phenylenediamine and terephthalaldehyde.The NOPCs have tunable morphologies,high surface areas,abundant heteroatom doping.More importantly,the carbons show a dominant micropores of 0.5-0.8 nm,comparable to the ionic sizes of LiTFSI(Li^+0.069 nm;TFSI-0.79 nm) water-in-salt electrolyte with a high potential window of 2.2 V.Consequently,the fabricated symmetric supercapacitor gives a high energy output of 30.5 Wh/kg at 1 kW/kg,and high stability after successive 10,000 cycles with ^96.8% retention.This study provides promising potential to develop high-energy supercapacitors. 展开更多
关键词 N/O CODOPED Porous carbon water-in-salt ELECTROLYTE Pore/ion size matching Symmetrical supercapacitor High energy density
原文传递
High-energy aqueous supercapacitors enabled by N/O codoped carbon nanosheets and“water-in-salt”electrolyte
10
作者 Jingjing Yan Ling Miao +5 位作者 Hui Duan Dazhang Zhu Yaokang Lv Liangchun Li Lihua Gan Mingxian Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第5期2681-2686,共6页
A facile fabrication strategy is reported to obtain N/O codoped porous carbon nanosheets for pur-pose of ameliorating the charge transfer and accumulation in the concentrated LiTFSI(lithium bis(trifluoromethane sulfon... A facile fabrication strategy is reported to obtain N/O codoped porous carbon nanosheets for pur-pose of ameliorating the charge transfer and accumulation in the concentrated LiTFSI(lithium bis(trifluoromethane sulfonyl)imide)electrolyte.By tunning the feed ratio of comonomers,the porous nanosheet structure is endowed with a significant ion-adsorption surface area(1630 m^(2)/g)and intercon-nected hierarchical porosity;meanwhile,high-level N/O dopants(N:3.58 at%,O:12.91 at%)increase the effective contact area for electrolyte ions,and further facilitate rapid ion/electron transfer.Benefiting from the advantageous features,carbon nanosheets electrode reveal an enhanced specific capacitance(375 F/g)in three-electrode configuration and the H_(2)SO_(4)-based device yields a high gravimetric energy density of 11.4 Wh/kg.Particularly,the ion-diffusion highways in porous carbon nanosheets contribute to the 2.25 V LiTFSI-based symmetric device with a high energy delivery up to 33.1 Wh/kg.This work offers an in-spiring strategy for facile fabrication of carbon nanosheets,and demonstrates their promising application in“water-in-salt”electrolyte-based supercapacitor systems. 展开更多
关键词 Porous carbon nanosheets N/O codoping water-in-salt electrolyte High-energy supercapacitor
原文传递
Niobium Tungsten Oxide in a Green Water‑in‑Salt Electrolyte Enables Ultra‑Stable Aqueous Lithium‑Ion Capacitors 被引量:4
11
作者 Shengyang Dong Yi Wang +2 位作者 Chenglong Chen Laifa Shen Xiaogang Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第12期106-116,共11页
Aqueous hybrid supercapacitors are attracting increasing attention due to their potential low cost,high safety and eco-friendliness.However,the narrow operating potential window of aqueous electrolyte and the lack of ... Aqueous hybrid supercapacitors are attracting increasing attention due to their potential low cost,high safety and eco-friendliness.However,the narrow operating potential window of aqueous electrolyte and the lack of suitable negative electrode materials seriously hinder its future applications.Here,we explore high concentrated lithium acetate with high ionic conductivity of 65.5 mS cm−1 as a green“water-in-salt”electrolyte,providing wide voltage window up to 2.8 V.It facilitates the reversible function of niobium tungsten oxide,Nb18W16O93,that otherwise only operations in organic electrolytes previously.The Nb18W16O93 with lithium-ion intercalation pseudocapacitive behavior exhibits excellent rate performance,high areal capacity,and ultra-long cycling stability.An aqueous lithium-ion hybrid capacitor is developed by using Nb18W16O93 as negative electrode combined with graphene as positive electrode in lithium acetate-based“water-in-salt”electrolyte,delivering a high energy density of 41.9 W kg−1,high power density of 20,000 W kg−1 and unexceptionable stability of 50,000 cycles. 展开更多
关键词 Aqueous hybrid capacitors water-in-salt electrolyte Niobium tungsten oxide Ultra-stability High power density
下载PDF
The electrolyte comprising more robust water and superhalides transforms Zn-metal anode reversibly and dendrite-free 被引量:3
12
作者 Chong Zhang Woochul Shin +11 位作者 Liangdong Zhu Cheng Chen Joerg C.Neuefeind Yunkai Xu Sarah I.Allec Cong Liu Zhixuan Wei Aigerim Daniyar Jia‐Xing Jiang Chong Fang P.Alex Greaney Xiulei Ji 《Carbon Energy》 CAS 2021年第2期339-348,共10页
A great challenge for all aqueous batteries,including Zn-metal batteries,is the parasitic hydrogen evolution reaction on the low-potential anode.Herein,we report the formula of a highly concentrated aqueous electrolyt... A great challenge for all aqueous batteries,including Zn-metal batteries,is the parasitic hydrogen evolution reaction on the low-potential anode.Herein,we report the formula of a highly concentrated aqueous electrolyte that mitigates hydrogen evolution by transforming water molecules more inert.The electrolyte comprises primarily ZnCl_(2) and LiCl as an additive,both of which are inexpensive salts.The O-H covalent bonds in water get strengthened in a chemical environment that has fewer hydrogen bonding interactions and a greater number of Zn-Cl superhalides,as suggested by integrated characterization and simulation.As a result,the average Coulombic efficiency of zincmetal anode is raised to an unprecedented>99.7%at 1mA cm^(−2).In the new electrolyte,the plating/stripping processes leave the zinc-metal anode dendrite-free,and the zinc-metal anode delivers stable plating/stripping cycles for 4000 hours with an areal capacity of 4 mAh cm^(−2) at 2mA cm^(−2).Furthermore,the high Coulombic efficiency of zinc-metal anode in the ZnCl_(2)-LiCl mixture electrolyte is demonstrated in full cells with a limited anode.The V_(2)O_(5)·H_(2)O||Zn full cell with an N/P mass ratio of 1.2 delivers a stable life of more than 2500 cycles,and the LiMn_(2)O_(4)||Zn hybrid cell with an N/P mass ratio of 0.6 exhibits 1500 cycles in its stable life. 展开更多
关键词 LICL REVERSIBILITY stability water-in-salt electrolyte Zn anode ZnCl_(2)
下载PDF
Aqueous high-voltage all 3D-printed micro-supercapacitors with ultrahigh areal capacitance and energy density 被引量:1
13
作者 Yu Liu Shuanghao Zheng +4 位作者 Jiaxin Ma Yuanyuan Zhu Jiemin Wang Xinliang Feng Zhong-Shuai Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期514-520,I0012,共8页
With the rapid development of integrated and miniaturized electronics,the planar energy storage devices with high capacitance and energy density are in enormous demand.Hence,the advanced manufacture and fast fabricati... With the rapid development of integrated and miniaturized electronics,the planar energy storage devices with high capacitance and energy density are in enormous demand.Hence,the advanced manufacture and fast fabrication of microscale planar energy units are of great significance.Herein,we develop aqueous planar micro-supercapacitors(MSCs) with ultrahigh areal capacitance and energy density via an efficient all-3 D-printing strategy,which can directly extrude the active material ink and gel electrolyte onto the substrate to prepare electrochemical energy storage devices.Both the printed active carbon/exfoliated graphene(AC/EG) electrode ink and electrolyte gel are highly processable with outstanding conductivity(~97 S cm^(-1) of electrode;-34.8 mS cm^(-1) of electrolyte),thus benefiting the corresponding shaping and electrochemical performances.Furthermore,the 3 D-printed symmetric MSCs can be operated stably at a high voltage up to 2.0 V in water-in-salt gel electrolyte,displaying ultrahigh areal capacitance of2381 mF cm^(-2) and exceptional energy density of 331 μWh cm^(-2),superior to previous printed micro energy units.In addition,we can further tailor the integrated 3 D-printed MSCs in parallel and series with various voltage and current outputs,enabling metal-free interconnection.Therefore,our all-3 D-printed MSCs place a great potential in developing high-power micro-electronics fabrication and integration. 展开更多
关键词 3D printing Micro-supercapacitors HIGH-VOLTAGE water-in-salt Graphene
下载PDF
Recent advances in “water in salt” electrolytes for aqueous rechargeable monovalent-ion(Li^(+), Na^(+), K^(+)) batteries 被引量:1
14
作者 Hong Gao Kaikai Tang +4 位作者 Jun Xiao Xin Guo Weihua Chen Hao Liu Guoxiu Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期84-99,I0003,共17页
Aqueous rechargeable batteries have attracted enormous attention owning to their intrinsic characteristics of non-flammability, low cost, and the superior ionic conductivity of the aqueous electrolyte.However, the nar... Aqueous rechargeable batteries have attracted enormous attention owning to their intrinsic characteristics of non-flammability, low cost, and the superior ionic conductivity of the aqueous electrolyte.However, the narrow electrochemical stability window(1.23 V), imposed by hydrogen and oxygen evolution, constrains the overall energy density of batteries. The revolutionary "water-in-salt” electrolytes considerably expand the electrochemical stability window to 3 or even 4 volts, giving rise to a new series of high-voltage aqueous metal-ion chemistries. Herein, the recent advances in "water-in-salt” electrolytes for aqueous monovalent-ion(Li^(+), Na^(+), K^(+)) rechargeable batteries have been systematically reviewed. Meanwhile, the corresponding reaction mechanisms, electrochemical performances and the existing challenges and opportunities are also highlighted. 展开更多
关键词 Aqueous batteries Concentrated electrolytes water-in-salt Hybrid electrolytes Solid-electrolyte interface
下载PDF
Ammonium-ion batteries with a wide operating temperature window from-40 to 80℃ 被引量:1
15
作者 Lei Yan Ya-e Qi +2 位作者 Xiaoli Dong Yonggang Wang Yongyao Xia 《eScience》 2021年第2期212-218,共7页
Ammonium-ion batteries are promising solutions for large-scale energy storage systems owing to their costeffectiveness,safety,and sustainability.Herein,we propose an aqueous ammonium-ion battery based on an organic po... Ammonium-ion batteries are promising solutions for large-scale energy storage systems owing to their costeffectiveness,safety,and sustainability.Herein,we propose an aqueous ammonium-ion battery based on an organic poly(1,5-naphthalenediamine)anode and an inorganic Prussian blue cathode in 19 M(M:mol kg^(-1))CH3COONH_(4)electrolyte.Its operation involves a reversible coordination reaction(C=N/C-N-conversion)in the anode and the NH_(4)^(+)insertion/extraction reaction in the cathode,along with NH_(4)^(+)acting as the charge carrier in a rocking-chair battery.Benefiting from the fast kinetics and stability of both electrodes,this aqueous ammoniumion battery shows an excellent rate capability and long cycle stability for 500 cycles.Moreover,an energy density as high as 31.8 Wh kg^(-1) can be achieved,based on the total mass of the cathode and anode.Surprisingly,this aqueous ammonium-ion battery works well over a wide temperature range from-40 to 80℃.This work will provide new opportunities to build wide-temperature aqueous batteries and broaden the horizons for large-scale energy storage systems. 展开更多
关键词 Ammonium-ion batteries Wide operation temperature Fast kinetics water-in-salt”electrolyte
原文传递
Porous carbon globules with moss-like surfaces from semi-biomass interpenetrating polymer network for efficient charge storage
16
作者 Guchuan Ping Ling Miao +7 位作者 Abuduheiremu Awati Xiaoyu Qian Ting Shi Yaokang Lv Yafei Liu Lihua Gan Mingxian Liu Dazhang Zhu 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第12期3811-3816,共6页
The bio-nanotechnological fabrication of high-surface-area carbons has attracted widespread interest in supercapacitor applications by using readily-available natural products as raw materials or bio-templates,and is ... The bio-nanotechnological fabrication of high-surface-area carbons has attracted widespread interest in supercapacitor applications by using readily-available natural products as raw materials or bio-templates,and is expected to refine on pore accessibility for compact energy storage. Here, a renovated design strategy of semi-biomass interpenetrating polymer network(IPN) derived carbon is demonstrated through physically knitting the biomacromolecule(sodium alginate, SA) polymeric chains into the highly crosslinked resorcinol-formaldehyde(RF) network and subsequent thermochemical conversion. Moleculelevel interlacing forces in such IPN efficiently relieve the RF skeleton shrinkage when producing carbon,while the other SA network addresses the macrophase separation issue to sacrifice as an in-knitted porogen and a morphology-directing agent. As a result, porous carbon globules are equipped with moss-like surfaces and interconnected pore architecture for high accessible electrode surface(1013 m^(2)/g), and efficient electrochemical responses are reached with the specific capacitance of 312 F/g at 1 A/g. Taking the advantage of 9 mol/kg NaClO_(4) complex-solvent electrolyte, the voltage window is extended to 2.4 V,endowing the two-electrode device with the high energy delivery of 32.3 Wh/kg at 240 W/kg. 展开更多
关键词 Porous carbon electrode Interpenetrating polymer network BIOMASS SUPERCAPACITOR water-in-salt electrolyte
原文传递
Fabrication of high Li:water molar ratio electrolytes for lithium-ion batteries
17
作者 Miaofeng Huang Jiajie Yang +3 位作者 Siron Zhen Chubin Wan Xiaoping Jiang Xin Ju 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第2期834-837,共4页
Hydrous electrolytes with high electrochemical potentials were obtained by hydrating water molecules into solutes to form high Li:water molar ratio electrolytes(HMRE).Solid polyethylene glycol(PEG) were e mployed to e... Hydrous electrolytes with high electrochemical potentials were obtained by hydrating water molecules into solutes to form high Li:water molar ratio electrolytes(HMRE).Solid polyethylene glycol(PEG) were e mployed to enha nce the molar ratio of Li^(+) to water in the electrolytes while reducing the consumption of Li-salt.The obtained mole ratio of Li^(+) to wa ter molecules in the hydrous electrolytes was greater than 1:1;however,the mass fraction of Li-salt was reduced to 61%(approximately 5.5 mol/kg,based on water and PEG).Compared with that of water-in-salt electrolytes,the mass fraction of Li-salt could be remarkably reduced by adding solid PEG.The electrochemical stability of the electrolytes improved considerably because of the strong hydration of Li^(+) by the water molecules.A beneficial passivation effect,arising from the decomposition of the electrolyte,at a wide potential window was observed. 展开更多
关键词 Aqueous electrolyte Wide potential window Aqueous Li-ion battery Solid electrolyte interface water-in-salt electrolytes
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部