期刊文献+
共找到1,488篇文章
< 1 2 75 >
每页显示 20 50 100
A review of ultra-high temperature heat-resistant energetic materials
1
作者 Rongzheng Zhang Yuangang Xu +4 位作者 Feng Yang Pengcheng Wang Qiuhan Lin Hui Huang Ming Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期33-57,共25页
Heat-resistant energetic materials refer to a type of energetic materials that possess a high melting point,high stability and operational safety. By studying the structures of these energetic materials has showed tha... Heat-resistant energetic materials refer to a type of energetic materials that possess a high melting point,high stability and operational safety. By studying the structures of these energetic materials has showed that the thermal stability can be enhanced by introducing amino groups to form intra/inter-molecular hydrogen bonds, constructing conjugate systems and designing symmetrical structures. This article aims to review the physical and chemical properties of ultra-high temperature heat-resistant energetic compounds and provide valuable theoretical insights for the preparation of ultra-high temperature heatresistant energetic materials. We also analyze the selected 20 heat-resistant energetic materials with decomposition temperatures higher than 350℃, serving as templates for the synthesis of various highperformance heat-resistant energetic materials. 展开更多
关键词 Heat-resistant energetic materials Organic synthesis CONJUGATED Hydrogen bond Symmetrical structure STABILIZATION
下载PDF
Effects of Fe-Al intermetallic compounds on interfacial bonding of clad materials 被引量:13
2
作者 王谦 冷雪松 +1 位作者 杨天豪 闫久春 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期279-284,共6页
The growth of intermetallic compounds at the interface between solid Al and Fe and the effects of intermetallic compound layers on the interfacial bonding of clad materials were investigated. The results showed that t... The growth of intermetallic compounds at the interface between solid Al and Fe and the effects of intermetallic compound layers on the interfacial bonding of clad materials were investigated. The results showed that the interface between the solid Fe and Al formed by heat-treatment consisted of Fe2Al5 and FeAl3 intermetallic compound layers, which deteriorated the interfacial bonding strength. Fractures occurred in the intermetallic compound layer during the shear testing. The location of the fracture depended on the defects of microcracks or voids in the intermetallic compound layers. The microcracks in the intermetallic compound layer were caused by the mismatch of thermal expansion coefficients of materials during cooling, and the voids were consistent with the Kirkendall effect. The work will lay an important foundation for welding and joining of aluminum and steel, especially for fabrication of Al-Fe clad materials. 展开更多
关键词 Al-Fe clad materials interfacial bonding Fe-Al intermetallic compounds interface structure mechanical properties
下载PDF
Effect of bonding interface on delamination behavior of drawn Cu/Al bar clad material 被引量:9
3
作者 Sangmok LEE Min-Geun LEE +4 位作者 Sang-Pill LEE Geun-Ahn LEE Yong-Bae KIM Jong-Sup LEE Dong-Su BAE 《中国有色金属学会会刊:英文版》 CSCD 2012年第S3期645-649,共5页
Cu/Al bar clad material was fabricated by a drawing process and a subsequent heat treatment.During these processes,intermetallic compounds have been formed at the interface of Cu/Al and have affected its bonding prope... Cu/Al bar clad material was fabricated by a drawing process and a subsequent heat treatment.During these processes,intermetallic compounds have been formed at the interface of Cu/Al and have affected its bonding property.Microstructures of Cu/Al interfaces were observed by OM,SEM and EDX Analyser in order to investigate the bonding properties of the material.According to the microstructure a series of diffusion layers were observed at the interface and the thicknesses of diffusion layers have increased with aging time as a result of the diffusion bonding.The interfaces were composed of 3-ply diffusion layers and their compositions were changed with aging time at 400 °C.These compositional compounds were revealed to be η2,(θ+η2),(α+θ) intermetallic phases.It is evident from V-notch impact tests that the growth of the brittle diffusion layers with the increasing aging time directly influenced delamination distance between the Cu sleeve and the Al core.It is suggested that the proper holding time at 400 °C for aging as post heat treatment of a drawn Cu/Al bar clad material would be within 1 h. 展开更多
关键词 drawn CU/AL BAR CLAD material aging bonding interface INTERMETALLIC compound diffusion layer DELAMINATION
下载PDF
A MULTISCALE MECHANICAL MODEL FOR MATERIALS BASED ON VIRTUAL INTERNAL BOND THEORY 被引量:6
4
作者 Zhang Zhennan Ge Xiurun Li Yonghe 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第3期196-202,共7页
Only two macroscopic parameters are needed to describe the mechanical properties of linear elastic solids, i.e. the Poisson's ratio and Young's modulus. Correspondingly, there should be two microscopic parameters to... Only two macroscopic parameters are needed to describe the mechanical properties of linear elastic solids, i.e. the Poisson's ratio and Young's modulus. Correspondingly, there should be two microscopic parameters to determine the mechanical properties of material if the macroscopic mechanical properties of linear elastic solids are derived from the microscopic level. Enlightened by this idea, a multiscale mechanical model for material, the virtual multi-dimensional internal bonds (VMIB) model, is proposed by incorporating a shear bond into the virtual internal bond (VIB) model. By this modification, the VMIB model associates the macro mechanical properties of material with the microscopic mechanical properties of discrete structure and the corresponding relationship between micro and macro parameters is derived. The tensor quality of the energy density function, which contains coordinate vector, is mathematically proved. From the point of view of VMIB, the macroscopic nonlinear behaviors of material could be attributed to the evolution of virtual bond distribution density induced by the imposed deformation. With this theoretical hypothesis, as an application example, a uniaxial compressive failure of brittle material is simulated. Good agreement between the experimental results and the simulated ones is found. 展开更多
关键词 virtual multi-dimensional internal bond material property dimensionality multiscale modeling molecular dynamics virtual internal bond
下载PDF
The dynamic stress intensity factor analysis of adhesively bonded material interface crack with damage under shear loading 被引量:1
5
作者 蔡艳红 陈浩然 +2 位作者 唐立强 闫澄 江莞 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第11期1517-1526,共10页
This paper studies the dynamic stress intensity factor (DSIF) at the interface in an adhesive joint under shear loading. Material damage is considered. By introducing the dislocation density function and using the i... This paper studies the dynamic stress intensity factor (DSIF) at the interface in an adhesive joint under shear loading. Material damage is considered. By introducing the dislocation density function and using the integral transform, the problem is reduced to algebraic equations and can be solved with the collocation dots method in the Laplace domain. Time response of DSIF is calculated with the inverse Laplace integral transform. The results show that the mode Ⅱ DSIF increases with the shear relaxation parameter, shear module and Poisson ratio, while decreases with the swell relaxation parameter. Damage shielding only occurs at the initial stage of crack propagation. The singular index of crack tip is -0.5 and independent on the material parameters, damage conditions of materials, and time. The oscillatory index is controlled by viscoelastic material parameters. 展开更多
关键词 dynamic stress intensity factor interface crack adhesively bonded material DAMAGE singular integral eouation
下载PDF
Theoretical Study of the N-NO_2 Bond Dissociation Energies for Energetic Materials with Density Functional Theory 被引量:1
6
作者 李小红 汤正新 +2 位作者 Abraham F.Jalbout 张现周 程新路 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2008年第6期677-682,共6页
The N-NO2 bond dissociation energies (BDEs) for 7 energetic materials were computed by means of accurate density functional theory (B3LYP, B3PW91 and B3P86) with 6-31G** and 6-311G** basis sets. By comparing t... The N-NO2 bond dissociation energies (BDEs) for 7 energetic materials were computed by means of accurate density functional theory (B3LYP, B3PW91 and B3P86) with 6-31G** and 6-311G** basis sets. By comparing the computed energies and experimental results, we find that the B3P86/6-311G** method can give good results of BDE, which has the mean absolute deviation of 1.30kcal/mol. In addition, substituent effects were also taken into account. It is noted that the Hammett constants of substituent groups are related to the BDEs of the N-NO2 bond and the bond dissociation energies of the energetic materials studied decrease when increasing the number of NO2 group. 展开更多
关键词 density functional theory bond dissociation energy energetic materials substituent effect
下载PDF
Ultrasonic echo signal fetures of dissimilar material bonding joints 被引量:2
7
作者 刚铁 Yasuo TAKAHASHI 《中国有色金属学会会刊:英文版》 CSCD 2004年第6期1050-1054,共5页
An ultrasonic evaluation method of echo feature of diffusion bond joint between two dissimilar materials is presented. The echo signal was acquired by an automatic ultrasonic C-scan test system. It is found that the i... An ultrasonic evaluation method of echo feature of diffusion bond joint between two dissimilar materials is presented. The echo signal was acquired by an automatic ultrasonic C-scan test system. It is found that the intensity of echo and its phase can be used to evaluate the joint quality, and interface products of dissimilar materials bonding can be evaluated by ultrasonic method. 展开更多
关键词 超声波测试 异金属 扩散结合 非破坏性演化
下载PDF
Time-dependent effects in transient liquid phase bonding of 304L and Cp-Ti using an Ag-Cu interlayer
8
作者 Saeed VAZIRIAN Mohammad MOSHKBAR BAKHSHAYESH Ali FARZADI 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2237-2255,共19页
One of the challenges for bimetal manufacturing is the joining process.Hence,transient liquid phase(TLP)bonding was performed between 304L stainless steel and Cp-Ti using an Ag-Cu interlayer with a thickness of 75μm ... One of the challenges for bimetal manufacturing is the joining process.Hence,transient liquid phase(TLP)bonding was performed between 304L stainless steel and Cp-Ti using an Ag-Cu interlayer with a thickness of 75μm for bonding time of 20,40,60,and 90 min.The bonding temperature of 860℃ was considered,which is under the β transus temperature of Cp-Ti.During TLP bonding,various intermetallic compounds(IMCs),including Ti_(5)Cr_(7)Fe_(17),(Cr,Fe)_(2)Ti,Ti(Cu,Fe),Ti_(2)(Cu,Ag),and Ti_(2)Cu from 304L toward Cp-Ti formed in the joint.Also,on the one side,with the increase in time,further diffusion of elements decreases the blocky IMCs such as Ti_(5)Cr_(7)Fe_(17),(Cr,Fe)_(2)Ti,Ti(Cu,Fe)in the 304L diffusion-affected zone(DAZ)and reaction zone,and on the other side,Ti_(2)(Cu,Ag)IMC transformed into fine morphology toward Cp-Ti DAZ.The microhardness test also demonstrated that the(Cr,Fe)_(2)Ti+Ti_(5)Cr_(7)Fe_(17) IMCs in the DAZ on the side of 304L have a hardness value of HV 564,making it the hardest phase.The maximum and minimum shear strength values are equal to 78.84 and 29.0 MPa,respectively.The cleavage pattern dominated fracture surfaces due to the formation of brittle phases in dissimilar joints. 展开更多
关键词 diffusion brazing transient liquid phase bonding dissimilar material joints microstructural evolution mechanical properties grade 2 titanium
下载PDF
New Technique for Making Composite Materials—Field Assisted Diffusion Bonding of Alumina to Aluminum
9
作者 丁立平 《Rare Metals》 SCIE EI CAS CSCD 1992年第1期66-67,共2页
There are two ways to join ceramics to metals: brazing and bonding. However, brazing processes are time-comsuming and energy-comsuming and is limited by the low working temperature. Generally speaking, bonding, or spe... There are two ways to join ceramics to metals: brazing and bonding. However, brazing processes are time-comsuming and energy-comsuming and is limited by the low working temperature. Generally speaking, bonding, or specifically, Diffusion Bonding performs better than brazing. Besides diffusion bonding, a more specialized technique is Field Assisted Diffusion Bonding (FADB). 展开更多
关键词 ALUMINA bondING Aluminum and Alloys bondING Composite materials bondING
下载PDF
Titanium diboride-metals gradient materials prepared by field activated diffusion bonding process
10
作者 陈少平 张楠 +2 位作者 孟庆森 U.Cosan Z.A.Munir 《China Welding》 EI CAS 2009年第4期10-14,共5页
Functionally gradient samples are prepared by getting metal Ni or Cu bonded with Ni-matrix composites reinforced by TiB2 particles by field activated diffusion bonding process. The intermetallic compound of Ni3Al has ... Functionally gradient samples are prepared by getting metal Ni or Cu bonded with Ni-matrix composites reinforced by TiB2 particles by field activated diffusion bonding process. The intermetallic compound of Ni3Al has been applied as a mediate layer in order to reduce residual stress. The microstracture, phase composition of the interfaces between the metal and Ni3Al are determined and the mechanical properties of the gradient materials are characterized. Elemental concentration profiles across the interfaces between layers showed significant diffusion dissolution and formation of firm bonds. Measured micro-hardness values of the sample increased monotonically from the metal substrate to the surface layer of composites. The values for the surface composite layer ranged from about 2 000 HK to 3 300 HK. The results of this investigation demonstrate the feasibility of field activated diffusion bonding process for rapid preparation of FGMs. 展开更多
关键词 electric field functionally gradient materials TIB2 NI3AL diffusion bonding
下载PDF
Dynamic fracture analysis of adhesive bonded material under normal loading
11
作者 Yanhong Cai Haoran Chen Xiaozhi Hu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第1期107-112,共6页
Dynamic fracture behavior of a Griffith crack along the interface of an adhesive bonded material under normal loading is studied. The singular integral equations are obtained by employing integral transformation and i... Dynamic fracture behavior of a Griffith crack along the interface of an adhesive bonded material under normal loading is studied. The singular integral equations are obtained by employing integral transformation and introducing dislocation density functions. By adopting Gauss-Jacobi integration formula, the problem is reduced to the solution of algebraic equations, and by collocation dots method. their solutions can be obtained Based on the parametric discussions presented in the paper, the following conclusions can be drawn: (1) Mode I dynamic stress intensity factor (DSIF) increases with increasing initial crack length and decreasing visco-elastic layer thickness, revealing distinct size effect; (2) The influence of the visco-elastic adhesive relaxation time on the DSIF should not be ignored. 展开更多
关键词 Adhesive bonded material Interface crackDynamic stress intensity factor Integral transformationSingular integral equation
下载PDF
Two material removal modes in chemical mechanical polishing:mechanical plowing vs.chemical bonding 被引量:1
12
作者 Yuan WU Liang JIANG +3 位作者 Wenhui LI Jiaxin ZHENG Yushan CHEN Linmao QIAN 《Friction》 SCIE EI CAS CSCD 2024年第5期897-905,共9页
With the rapid development of semiconductors,the number of materials needed to be polished sharply increases.The material properties vary significantly,posing challenges to chemical mechanical polishing(CMP).According... With the rapid development of semiconductors,the number of materials needed to be polished sharply increases.The material properties vary significantly,posing challenges to chemical mechanical polishing(CMP).Accordingly,the study aimed to classify the material removal mechanism.Based on the CMP and atomic force microscopy results,the six representative metals can be preliminarily classified into two groups,presumably due to different material removal modes.From the tribology perspective,the first group of Cu,Co,and Ni may mainly rely on the mechanical plowing effect.After adding H_(2)O_(2),corrosion can be first enhanced and then suppressed,affecting the surface mechanical strength.Consequently,the material removal rate(MRR)and the surface roughness increase and decrease.By comparison,the second group of Ta,Ru,and Ti may primarily depend on the chemical bonding effect.Adding H_(2)O_(2)can promote oxidation,increasing interfacial chemical bonds.Therefore,the MRR increases,and the surface roughness decreases and levels off.In addition,CMP can be regulated by tuning the synergistic effect of oxidation,complexation,and dissolution for mechanical plowing,while tuning the synergistic effect of oxidation and ionic strength for chemical bonding.The findings provide mechanistic insight into the material removal mechanism in CMP. 展开更多
关键词 Chemical mechanical polishing corrosion wear material removal mode mechanical plowing chemical bonding
原文传递
Hydrogen-Bonding Crosslinked Supramolecular Polymer Materials:From Design Evolution of Side-Chain Hydrogen-Bonding to Applications
13
作者 Qian Zhang Zi-Yang Xu Wen-Guang Liu 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第11期1619-1641,I0006,共24页
Hydrogen bonds(H-bonds)are the most essential non-covalent interactions in nature,playing a crucial role in stabilizing the secondary structures of proteins.Taking inspiration from nature,researchers have developed se... Hydrogen bonds(H-bonds)are the most essential non-covalent interactions in nature,playing a crucial role in stabilizing the secondary structures of proteins.Taking inspiration from nature,researchers have developed several multiple H-bonds crosslinked supramolecular polymer materials through the incorporation of H-bond side-chain units into the polymer chains.N-acryloyl glycinamide(NAGA)is a monomer with dual amides in the side group,which facilitates the formation of multiple dense intermolecular H-bonds within poly(N-acryloyl glycinamide)(PNAGA),thereby exhibiting diverse properties dependent on concentration and meeting various requirements across different applications.Moreover,numerous attempts have been undertaken to synthesize diverse NAGA-derived units through meticulous chemical structure regulation and fabricate corresponding H-bonding crosslinked supramolecular polymer materials.Despite this,the systematic clarification of the impact of chemical structures of side moieties on intermolecular associations and material performances remains lacking.The present review will focus on the design principle for synthesizing NAGA-derived H-bond side-chain units and provide an overview of the recent advancements in multiple H-bonds crosslinked PNAGA-derived supramolecular polymer materials,which can be categorized into three groups based on the chemical structure of H-bonds units:(1)monomers with solely cooperative H-bonds;(2)monomers with synergistic H-bonds and other physical interactions;and(3)diol chain extenders with cooperative H-bonds.The significance of subtle structural variations in these NAGA-derived units,enabling the fabrication of hydrogen-bonded supramolecular polymer materials with significantly diverse performances,will be emphasized.Moreover,the extensive applications of multiple H-bonds crosslinked supramolecular polymer materials will be elucidated. 展开更多
关键词 Hydrogen bonds High strength Side chain Supramolecular polymer materials
原文传递
Photo-cured phase change energy storage material with photo-thermal conversion, self-cleaning and electromagnetic shielding performances via the lamellar structure strengthened by segment rearrangement of dynamic disulfide bond
14
作者 Ziyu Liu Yuhan Li +1 位作者 Jue Cheng Junying Zhang 《Journal of Materiomics》 SCIE CSCD 2024年第5期1049-1062,共14页
At present,phase change materials(PCMs)with single function hardly meet the needs of advanced intelligent materials in practical applications,and the multifunction integration is the current trend.However,photo-cured ... At present,phase change materials(PCMs)with single function hardly meet the needs of advanced intelligent materials in practical applications,and the multifunction integration is the current trend.However,photo-cured multifunctional PCMs are hampered by insufficient transparency due to adding functional fillers,such as carbon and metal materials.The novel strategy is necessary to overcome this limitation.Here,a photo-cured multifunctional PCM is prepared by using the design of a lamellar structure composing the photo-cured phase change polymer layer and the functional fillers layer.The curing of the phase change polymer is realized by the photo-induced"thiol-ene"click reaction,and reversible dynamic disulfide bonds are introduced into the PCM,which not only gives the phase change crosslinked network reprocessability,but also strengthens the interface layer by the chain rearrangement to form a stable composite structure.The carboxylated multiwalled carbon nanotubes(CCNTs)and silver nanowires(AgNWs),as functional fillers,give the PCM photo-thermal conversion,self-cleaning and electromagnetic shielding(EMI SE)performances.Its phase change latent heat and photo-thermal conversion can reach 105.2 J/g and 78.5%,and the water contact angle is 142°with self-cleaning performance.In addition,due to the dense and well-developed conductive path formed by AgNWs layer on the PCM surface,the EMI SE effect can reach 39 dB with only 6.3%(in mass)filler content and 7.2%phase change latent heat loss.As far as we know,this is the first report about photo-cured PCMs with self-cleaning,photo-thermal conversion and EMI SE performances. 展开更多
关键词 Photo-curing Phase change materials Lamellar structure Interface bonding Multifunctional integration
原文传递
Solution-based Chemical Strategies to Purposely Control the Microstructure of Functional Materials 被引量:4
15
作者 Fei LIU Congting SUN Chenglin YAN Dongfeng XUE 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第4期641-648,共8页
Micro/nanostructured crystals with controlled architectures are desirable for many applications in optics, electronics, biology, medicine, and energy conversions. Low-temperature, aqueous chemical routes have been wid... Micro/nanostructured crystals with controlled architectures are desirable for many applications in optics, electronics, biology, medicine, and energy conversions. Low-temperature, aqueous chemical routes have been widely investigated for the synthesis of particles, and arrays of oriented nanorods and nanotubes. In this paper, based on the ideal crystal shapes predicted by the chemical bonding theory, we have developed some potential chemical strategies to tune the microstructure of functional materials, ZnS and Nb205 nanotube arrays, MgO wiskers and nestlike spheres, and cubic phase Cu2O microcrystals were synthesized here to elucidate these strategies. We describe their controlled crystallization processes and illustrate the detailed key factors controlling their growth by examining various reaction parameters. Current results demonstrate that our designed chemical strategies for tuning microstructure of functional materials are applicable to several technologically important materials, and therefore may be used as a versatile and effective route to the controllable synthesis of other inorganic functional materials. 展开更多
关键词 Functional materials Chemical strategy Chemical bonding theory MICROSTRUCTURE
下载PDF
Mechanical behavior and deformation mechanism of ballast bed with various fouling materials 被引量:7
16
作者 ZHANG Zhi-hai XIAO Hong +2 位作者 WANG Meng LIU Guang-peng WANG Hao-yu 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2857-2874,共18页
In order to study the interaction between various fouling particles and ballast,a multi-layer and multi-scale discrete element model(DEM)including the sleeper,ballast bed and the surface layer of subgrade was develope... In order to study the interaction between various fouling particles and ballast,a multi-layer and multi-scale discrete element model(DEM)including the sleeper,ballast bed and the surface layer of subgrade was developed.Two typical fouling particles,the hard particles(sand)and soft ones(coal fines),are considered.A support stiffness test of the ballast bed under various fouling conditions was conducted to calibrate the microscopic parameters of the contact model.With the model,the influence of fouling particles on the mechanical behavior and deformation of the ballast bed was analyzed from macro and micro perspectives.The results show that the increase in the strength of the fouling particles enlarges the stiffness of the ballast bed.Hard particles increase the uniformity coefficient of the contact force bondγof ballast by 50.4%.Fouling particles increase the average stress in the subgrade,soft particles by 2 kPa and hard particles by 1 kPa.Hard particles can reduce the elasticity,plastic deformation and energy dissipation in the track structure.As the fouling particle changes from hard to soft,the proportion of the settlement in ballast bed increases to 40.5%and surface layer of swbgrade settlement decreases to 59.5%.Thus,the influence of fouling particles should be considered carefully in railway design and maintenance. 展开更多
关键词 ballasted track fouling material discrete element method contact force bond elastic-plastic deformation
下载PDF
An improved sodium silicate binder modified by ultra-fine powder materials 被引量:5
17
作者 WANG Ji-na FAN Zi-tian +2 位作者 WANG Hua-fang DONG Xuan-pu HUANG Nai-yu 《China Foundry》 SCIE CAS 2007年第1期26-30,共5页
This paper presents a new method of modifying sodium silicate binder with ultra-fine powders. The sodium silicate binder modified by ultra-fine powder A and the organic B can reduce the addition amount of the binder. ... This paper presents a new method of modifying sodium silicate binder with ultra-fine powders. The sodium silicate binder modified by ultra-fine powder A and the organic B can reduce the addition amount of the binder. The results indicate that the 24 h strength has increased by 39.9% at room temperature and the residual strength has decreased by 30.7% at 800℃, compared to the conventional sodium silicate. An available material to improve the moisture resistance was also found by adding about 2% more inorganic C, and it can increase the moist strength by 20%. In the end, the microanalyses are given to explain the modifying machanism, i. e., the ultra-fine powder A can refine the sodium silicate binder to avoid holes in the binder bond, which can increase the 24 h strength at room temperture, and can lead to more cracks in the bond after the molding sand is heated to 800℃. This is because of the stress caused by the new eutectic complex of modified sodium silicate binder. 展开更多
关键词 sodium silicate binder modification ultra-fine powder materials bonding strength moisture resistance COLLAPSIBILITY
下载PDF
Highly Improved Microstructure and Properties of Poly(p-phenylene terephthalamide) Paper-based Materials via Hot Calendering Process 被引量:5
18
作者 Bin Yang ZhaoQing Lu +2 位作者 MeiYun Zhang ShunXi Song RuNan Wang 《Paper And Biomaterials》 2017年第3期42-50,共9页
In this study,the effect of hot calendering process on the microstructure and properties of poly(p-phenylene terephthalamide)(PPTA) paper-based materials was investigated.The microstructures of the fracture surface,cr... In this study,the effect of hot calendering process on the microstructure and properties of poly(p-phenylene terephthalamide)(PPTA) paper-based materials was investigated.The microstructures of the fracture surface,crystalline structure,and single fiber strength of the PPTA paperbased materials as well as the different bonding behaviors between the PPTA fibers and PPTA fibrids obtained before and after the hot calendering process were examined.The results indicated that a high linear pressure would result in a limited improvement of the strength owing to the unimproved paper structure.The optimal values of tensile index and dielectric strength of 56.6 N·m/g and 27.6 kV/mm,respectively,could only be achieved with a synergistic effects of hot calendering temperature and linear pressure(240℃ and 110 k N/m,respectively).This result suggested it was possible to achieve a significant reinforcement and improvement in the interfacial bonding of functional PPTA paper-based materials,and avoid the formation of unexpected pleats and cracks in PPTA paper-based materials during the hot calendering process. 展开更多
关键词 PPTA paper-based materials hot calendering interfacial bonding crystalline structure PPTA fiber
下载PDF
Materials Studio软件在材料科学基础教学中的应用 被引量:4
19
作者 燕云程 《广东化工》 CAS 2020年第12期253-254,共2页
为了解决材料科学基础中晶体学和键合理论教学中存在的知识抽象、不易讲解的问题,采用Materials Studio软件的Visualizer模块和Castep程序包结合相关问题分别建立晶体空间结构和计算晶体的差分电荷密度图辅助材料科学基础教学。结果表... 为了解决材料科学基础中晶体学和键合理论教学中存在的知识抽象、不易讲解的问题,采用Materials Studio软件的Visualizer模块和Castep程序包结合相关问题分别建立晶体空间结构和计算晶体的差分电荷密度图辅助材料科学基础教学。结果表明通过Materials Studio软件建立的晶体空间结构和计算所得差分电荷密度图生动形象,能够帮助学生更深入地理解晶体学和键合理论的相关知识,达到良好的教学效果。为学生深入地学习材料科学基础打下坚实的基础。 展开更多
关键词 materials Studio 材料科学基础 晶体学 键合理论 教学
下载PDF
Interlaminar Bonding Performance of UHPC/SMA Based on Diagonal Shear Test 被引量:1
20
作者 丁庆军 LEI Yuxiang +3 位作者 张高展 CHENG Huaqiang ZHAO Mingyu GUO Kaizheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期97-108,共12页
To evaluate various interlaminar bonding reinforcement techniques used for steel bridge decks,the UHPC surface was roughened with shot blasting(SB),transverse grooving(TG)and surface embedded stone(S),epoxy resin(E),e... To evaluate various interlaminar bonding reinforcement techniques used for steel bridge decks,the UHPC surface was roughened with shot blasting(SB),transverse grooving(TG)and surface embedded stone(S),epoxy resin(E),epoxy asphalt(EA)and high viscosity high elasticity asphalt(HV)as interlayer bonding materials.In addition,a diagonal shear test was conducted using a self-designed diagonal shear jig.The effects of adhesive layer materials type,surface texture type,and different loading rates on the interlaminar bonding performance of UHPC/SMA combination specimens were investigated.The experimental study showed that the peak shear strength and shear modulus of the combined specimen decreased gradually with the decrease of thermosetting of the adhesive layer materials.The peak shear fracture energy of E was greater than that of HV and EA.The synergistic effect of the contact force generated by the roughing of the UHPC surface,the friction force,and the bonding force provided by the adhesive layer material can significantly improve the interlaminar shear performance of the assemblies.The power-law function of shear strength and shear modulus was proposed.The power-law model of peak shear strength and loading rate was verified.The shear strength and predicted shear strength satisfy the positive proportional functions with scale factors of 0.985,1.015,0.961,and 1.028,respectively. 展开更多
关键词 UHPC SMA bonding materials surface textures loading rate bonding performance
原文传递
上一页 1 2 75 下一页 到第
使用帮助 返回顶部