Simulation of elastic wave propagation has important applications in many areas such as inverse problemand geophysical exploration.In this paper,stability conditions for wave simulation in 3-D anisotropic media with t...Simulation of elastic wave propagation has important applications in many areas such as inverse problemand geophysical exploration.In this paper,stability conditions for wave simulation in 3-D anisotropic media with the pseudospectral method are investigated.They can be expressed explicitly by elasticity constants which are easy to be applied in computations.The 3-Dwave simulation for two typical anisotropic media,transversely isotropic media and orthorhombic media,are carried out.The results demonstrate some satisfactory behaviors of the pseudospectral method.展开更多
Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling two- dimensional wave fields and therefore cannot accurately ...Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling two- dimensional wave fields and therefore cannot accurately simulate three-dimensional (3-D) full-wave fields or seismic records in a full-space observation system. In this study, we use the first-order velocity-stress staggered-grid finite difference algorithm to simulate 3-D full-wave fields with P-wave sources in front of coal mine roadways. We determine the three components of velocity Vx, Vy, and Vz for the same node in 3-D staggered-grid finite difference models by calculating the average value of Vy, and Vz of the nodes around the same node. We ascertain the wave patterns and their propagation characteristics in both symmetrical and asymmetric coal mine roadway models. Our simulation results indicate that the Rayleigh channel wave is stronger than the Love channel wave in front of the roadway face. The reflected Rayleigh waves from the roadway face are concentrated in the coal seam, release less energy to the roof and floor, and propagate for a longer distance. There are surface waves and refraction head waves around the roadway. In the seismic records, the Rayleigh wave energy is stronger than that of the Love channel wave along coal walls of the roadway, and the interference of the head waves and surface waves with the Rayleigh channel wave is weaker than with the Love channel wave. It is thus difficult to identify the Love channel wave in the seismic records. Increasing the depth of the receivers in the coal walls can effectively weaken the interference of surface waves with the Rayleigh channel wave, but cannot weaken the interference of surface waves with the Love channel wave. Our research results also suggest that the Love channel wave, which is often used to detect geological structures in coal mine stopes, is not suitable for detecting geological structures in front of coal mine roadways. Instead, the Rayleigh channel wave can be used for the advance detection of geological structures in coal mine roadways.展开更多
Wave breaking plays an important role in wave-structure interaction. A novel control volume finite element method with adaptive unstructured meshes is employed here to study 3-D breaking waves. The numerical framework...Wave breaking plays an important role in wave-structure interaction. A novel control volume finite element method with adaptive unstructured meshes is employed here to study 3-D breaking waves. The numerical framework consists of a "volume of fluid" type method for the interface capturing and adaptive unstructured meshes to improve computational efficiency. The numerical model is validated against experimental measurements of breaking wave over a sloping beach and is then used to study the breaking wave impact on a vertical circular cylinder on a slope. Detailed complex interfacial structures during wave impact, such as plunging jet formation and splash-up are captured in the simulation, demonstrating the capability of the present method.展开更多
Flat subduction can significantly influence the distribution of volcanism,stress state,and surface topography of the overriding plate.However,the mechanisms for inducing flat subduction remain controversial.Previous t...Flat subduction can significantly influence the distribution of volcanism,stress state,and surface topography of the overriding plate.However,the mechanisms for inducing flat subduction remain controversial.Previous two-dimensional(2-D)numerical models and laboratory analogue models suggested that a buoyant impactor(aseismic ridge,oceanic plateau,or the like)may induce flat subduction.However,three-dimensional(3-D)systematic studies on the relationship between flat subduction and buoyant blocks are still lacking.Here,we use a 3-D numerical model to investigate the influence of the aseismic ridge,especially its width(which is difficult to consider in 2-D numerical models),on the formation of flat subduction.Our model results suggest that the aseismic ridge needs to be wide and thick enough to induce flat subduction,a condition that is difficult to satisfy on the Earth.We also find that the subduction of an aseismic ridge parallel to the trench or a double aseismic ridge normal to the trench has a similar effect on super-wide aseismic ridge subduction in terms of causing flat subduction,which can explain the flat subduction observed beneath regions such as Chile and Peru.展开更多
Based on the understanding of the mechanism of energy dissipation,a new type of plunge pool is presented with the advantages of high rate of energy dissipation,low impact pressure,and small close-to-bed velocity on th...Based on the understanding of the mechanism of energy dissipation,a new type of plunge pool is presented with the advantages of high rate of energy dissipation,low impact pressure,and small close-to-bed velocity on the soleplate of the plunge pool.The first advantage owes to enlarged shearing energy dissipation areas in the plunge pool,while the other two are caused by the jet that enters in a nearly horizontal level to keep the soleplate from being scoured directly.All of the above arrangements make this new type of energy dissipator distinct from the underflow energy dissipation.Through experiments on the physical model,the authors found that the water flow maintained stable and submerged in horizontal direction when the flow was narrow in horizontal but thick in vertical direction.However,the wide flat nappe was ready to submerge or float as the downstream water level rised or dropped.The entire flow fields of multi-horizontal submerged jets into plunge pool were also numerically simulated.The numerical results of water surface curve,close-to-bed velocity and floor pressure agree well with the experimental data.The flow pattern in the plunge pool was analyzed after combining the laboratory data and numerical simulation.展开更多
基金supported by the 973 State Key Project under the grant No.2010 CB731505supported by the key national natural science foundation of China under the grant No.10431030the Chair foundation of State Key Laboratory of Scientific and Engineering Computing(LSEC).
文摘Simulation of elastic wave propagation has important applications in many areas such as inverse problemand geophysical exploration.In this paper,stability conditions for wave simulation in 3-D anisotropic media with the pseudospectral method are investigated.They can be expressed explicitly by elasticity constants which are easy to be applied in computations.The 3-Dwave simulation for two typical anisotropic media,transversely isotropic media and orthorhombic media,are carried out.The results demonstrate some satisfactory behaviors of the pseudospectral method.
基金supported by National Natural Science Foundation of China(Nos.41204077,41372290,41572244,51034003,51174210,and 51304126)natural science foundation of Shandong Province(Nos.ZR2011EEZ002 and ZR2013EEQ019)State Key Research Development Program of China(No.2016YFC0600708-3)
文摘Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling two- dimensional wave fields and therefore cannot accurately simulate three-dimensional (3-D) full-wave fields or seismic records in a full-space observation system. In this study, we use the first-order velocity-stress staggered-grid finite difference algorithm to simulate 3-D full-wave fields with P-wave sources in front of coal mine roadways. We determine the three components of velocity Vx, Vy, and Vz for the same node in 3-D staggered-grid finite difference models by calculating the average value of Vy, and Vz of the nodes around the same node. We ascertain the wave patterns and their propagation characteristics in both symmetrical and asymmetric coal mine roadway models. Our simulation results indicate that the Rayleigh channel wave is stronger than the Love channel wave in front of the roadway face. The reflected Rayleigh waves from the roadway face are concentrated in the coal seam, release less energy to the roof and floor, and propagate for a longer distance. There are surface waves and refraction head waves around the roadway. In the seismic records, the Rayleigh wave energy is stronger than that of the Love channel wave along coal walls of the roadway, and the interference of the head waves and surface waves with the Rayleigh channel wave is weaker than with the Love channel wave. It is thus difficult to identify the Love channel wave in the seismic records. Increasing the depth of the receivers in the coal walls can effectively weaken the interference of surface waves with the Rayleigh channel wave, but cannot weaken the interference of surface waves with the Love channel wave. Our research results also suggest that the Love channel wave, which is often used to detect geological structures in coal mine stopes, is not suitable for detecting geological structures in front of coal mine roadways. Instead, the Rayleigh channel wave can be used for the advance detection of geological structures in coal mine roadways.
基金the financial support by the National Natural Science Foundation of China (Grant No. 51490673)the Open Awards of the State Key Laboratory of Coastal and Offshore Engineering+1 种基金funded by the EPSRC MEMPHIS multiphase Programme (Grant No. EP/K003976/1)funding from the European Union Seventh Framework Programme (FP7/20072013) under grant agreement No. 603663 for the research project PEARL (Preparing for Extreme and Rare events in coasta L regions)
文摘Wave breaking plays an important role in wave-structure interaction. A novel control volume finite element method with adaptive unstructured meshes is employed here to study 3-D breaking waves. The numerical framework consists of a "volume of fluid" type method for the interface capturing and adaptive unstructured meshes to improve computational efficiency. The numerical model is validated against experimental measurements of breaking wave over a sloping beach and is then used to study the breaking wave impact on a vertical circular cylinder on a slope. Detailed complex interfacial structures during wave impact, such as plunging jet formation and splash-up are captured in the simulation, demonstrating the capability of the present method.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB 41000000)the National Natural Science Foundation of China(Grant No.41820104004)the Fundamental Research Funds for the Central Universities(Grant No.WK2080000144).
文摘Flat subduction can significantly influence the distribution of volcanism,stress state,and surface topography of the overriding plate.However,the mechanisms for inducing flat subduction remain controversial.Previous two-dimensional(2-D)numerical models and laboratory analogue models suggested that a buoyant impactor(aseismic ridge,oceanic plateau,or the like)may induce flat subduction.However,three-dimensional(3-D)systematic studies on the relationship between flat subduction and buoyant blocks are still lacking.Here,we use a 3-D numerical model to investigate the influence of the aseismic ridge,especially its width(which is difficult to consider in 2-D numerical models),on the formation of flat subduction.Our model results suggest that the aseismic ridge needs to be wide and thick enough to induce flat subduction,a condition that is difficult to satisfy on the Earth.We also find that the subduction of an aseismic ridge parallel to the trench or a double aseismic ridge normal to the trench has a similar effect on super-wide aseismic ridge subduction in terms of causing flat subduction,which can explain the flat subduction observed beneath regions such as Chile and Peru.
基金the United Research Foundation of the National Natural Science Foundation of China(Grant Nos.50539060and50709020)"973"Project of China(Grant No.2007CB714105)
文摘Based on the understanding of the mechanism of energy dissipation,a new type of plunge pool is presented with the advantages of high rate of energy dissipation,low impact pressure,and small close-to-bed velocity on the soleplate of the plunge pool.The first advantage owes to enlarged shearing energy dissipation areas in the plunge pool,while the other two are caused by the jet that enters in a nearly horizontal level to keep the soleplate from being scoured directly.All of the above arrangements make this new type of energy dissipator distinct from the underflow energy dissipation.Through experiments on the physical model,the authors found that the water flow maintained stable and submerged in horizontal direction when the flow was narrow in horizontal but thick in vertical direction.However,the wide flat nappe was ready to submerge or float as the downstream water level rised or dropped.The entire flow fields of multi-horizontal submerged jets into plunge pool were also numerically simulated.The numerical results of water surface curve,close-to-bed velocity and floor pressure agree well with the experimental data.The flow pattern in the plunge pool was analyzed after combining the laboratory data and numerical simulation.