期刊文献+
共找到351篇文章
< 1 2 18 >
每页显示 20 50 100
Hybrid pedestrian positioning system using wearable inertial sensors and ultrasonic ranging
1
作者 Lin Qi Yu Liu +2 位作者 Chuanshun Gao Tao Feng Yue Yu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期327-338,共12页
Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional ... Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional PPS is limited by the cumulative error of inertial sensors,complex motion modes of pedestrians,and the low robustness of the multi-sensor collaboration structure.This paper presents a hybrid pedestrian positioning system using the combination of wearable inertial sensors and ultrasonic ranging(H-PPS).A robust two nodes integration structure is developed to adaptively combine the motion data acquired from the single waist-mounted and foot-mounted node,and enhanced by a novel ellipsoid constraint model.In addition,a deep-learning-based walking speed estimator is proposed by considering all the motion features provided by different nodes,which effectively reduces the cumulative error originating from inertial sensors.Finally,a comprehensive data and model dual-driven model is presented to effectively combine the motion data provided by different sensor nodes and walking speed estimator,and multi-level constraints are extracted to further improve the performance of the overall system.Experimental results indicate that the proposed H-PPS significantly improves the performance of the single PPS and outperforms existing algorithms in accuracy index under complex indoor scenarios. 展开更多
关键词 Pedestrian positioning system wearable inertial sensors Ultrasonic ranging Deep-learning Data and model dual-driven
下载PDF
Wearable multilead ECG sensing systems using on-skin stretchable and breathable dry adhesives
2
作者 Yingxi Xie Longsheng Lu +1 位作者 Wentao Wang Huan Ma 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第2期167-180,共14页
Electrocardiogram(ECG)monitoring is used to diagnose cardiovascular diseases,for which wearable electronics have attracted much attention due to their lightweight,comfort,and long-term use.This study developed a weara... Electrocardiogram(ECG)monitoring is used to diagnose cardiovascular diseases,for which wearable electronics have attracted much attention due to their lightweight,comfort,and long-term use.This study developed a wearablemultilead ECG sensing system with on-skin stretchable and conductive silver(Ag)-coated fiber/silicone(AgCF-S)dry adhesives.Tangential and normal adhesion to pigskin(0.43 and 0.20 N/cm2,respectively)was optimized by the active control of fiber density and mixing ratio,resulting in close contact in the electrode–skin interface.The breathableAgCF-S dry electrodewas nonallergenic after continuous fit for 24 h and can be reused/cleaned(>100 times)without loss of adhesion.The AgCF encapsulated inside silicone elastomers was overlapped to construct a dynamic network under repeated stretching(10%strain)and bending(90°)deformations,enabling small intrinsic impedance(0.3,0.1 Hz)and contact impedance variation(0.7 k)in high-frequency vibration(70 Hz).All hard/soft modules of the multilead ECG system were integrated into lightweight clothing and equipped with wireless transmission for signal visualization.By synchronous acquisition of I–III,aVR,aVL,aVF,and V4 lead data,the multilead ECG sensing system was suitable for various scenarios,such as exercise,rest,and sleep,with extremely high signal-to-noise ratios. 展开更多
关键词 Multilead electrocardiogram Dry electrodes wearable electronics Wireless transmission
下载PDF
Measuring Pedestrian Stress Response (MPSR) Using Wearable Technologies
3
作者 Ishita Dash Rachael Anne Muscatello +2 位作者 Mark D. Abkowitz Ella R. Mostoller Mike Sewell 《Journal of Transportation Technologies》 2024年第2期224-235,共12页
Walkability is an essential aspect of urban transportation systems. Properly designed walking paths can enhance transportation safety, encourage pedestrian activity, and improve community quality of life. This, in tur... Walkability is an essential aspect of urban transportation systems. Properly designed walking paths can enhance transportation safety, encourage pedestrian activity, and improve community quality of life. This, in turn, can help achieve sustainable development goals in urban areas. This pilot study uses wearable technology data to present a new method for measuring pedestrian stress in urban environments and the results were presented as an interactive geographic information system map to support risk-informed decision-making. The approach involves analyzing data from wearable devices using heart rate variability (RMSSD and slope analysis) to identify high-stress locations. This data-driven approach can help urban planners and safety experts identify and address pedestrian stressors, ultimately creating safer, more walkable cities. The study addresses a significant challenge in pedestrian safety by providing insights into factors and locations that trigger stress in pedestrians. During the pilot study, high-stress pedestrian experiences were identified due to issues like pedestrian-scooter interaction on pedestrian paths, pedestrian behavior around high foot traffic areas, and poor visibility at pedestrian crossings due to inadequate lighting. 展开更多
关键词 wearable Technology WALKABILITY Built Environment Pedestrian Safety
下载PDF
Functional Materials and Innovative Strategies for Wearable Thermal Management Applications 被引量:1
4
作者 Yeongju Jung Minwoo Kim +3 位作者 Taegyeom Kim Jiyong Ahn Jinwoo Lee Seung Hwan Ko 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期562-603,共42页
Thermal management is essential in our body as it affects various bodily functions,ranging from thermal discomfort to serious organ failures,as an example of the worst-case scenario.There have been extensive studies a... Thermal management is essential in our body as it affects various bodily functions,ranging from thermal discomfort to serious organ failures,as an example of the worst-case scenario.There have been extensive studies about wearable materials and devices that augment thermoregulatory functionalities in our body,employing diverse materials and systematic approaches to attaining thermal homeostasis.This paper reviews the recent progress of functional materials and devices that contribute to thermoregulatory wearables,particularly emphasizing the strategic methodology to regulate body temperature.There exist several methods to promote personal thermal management in a wearable form.For instance,we can impede heat transfer using a thermally insulating material with extremely low thermal conductivity or directly cool and heat the skin surface.Thus,we classify many studies into two branches,passive and active thermal management modes,which are further subdivided into specific strategies.Apart from discussing the strategies and their mechanisms,we also identify the weaknesses of each strategy and scrutinize its potential direction that studies should follow to make substantial contributions to future thermal regulatory wearable industries. 展开更多
关键词 Thermal management Passive heat transfer Active heat transfer wearable materials wearable device
下载PDF
Engineering Smart Composite Hydrogels for Wearable Health Monitoring
5
作者 Jianye Li Qiongling Ding +6 位作者 Hao Wang Zixuan Wu Xuchun Gui Chunwei Li Ning Hu Kai Tao Jin Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期233-277,共45页
Growing health awareness triggers the public's concern about health problems. People want a timely and comprehensive picture of their condition without frequent trips to the hospital for costly and cumbersome gene... Growing health awareness triggers the public's concern about health problems. People want a timely and comprehensive picture of their condition without frequent trips to the hospital for costly and cumbersome general check-ups. The wearable technique provides a continuous measurement method for health monitoring by tracking a person's physiological data and analyzing it locally or remotely.During the health monitoring process,different kinds of sensors convert physiological signals into electrical or optical signals that can be recorded and transmitted, consequently playing a crucial role in wearable techniques. Wearable application scenarios usually require sensors to possess excellent flexibility and stretchability. Thus, designing flexible and stretchable sensors with reliable performance is the key to wearable technology. Smart composite hydrogels, which have tunable electrical properties, mechanical properties, biocompatibility, and multi-stimulus sensitivity, are one of the best sensitive materials for wearable health monitoring. This review summarizes the common synthetic and performance optimization strategies of smart composite hydrogels and focuses on the current application of smart composite hydrogels in the field of wearable health monitoring. 展开更多
关键词 wearable health monitoring Smart composite hydrogel Hydrogel engineering wearable sensor Flexible and stretchable sensors
下载PDF
A Thermoregulatory Flexible Phase Change Nonwoven for All‑Season High‑Efficiency Wearable Thermal Management 被引量:1
6
作者 Hanqing Liu Feng Zhou +9 位作者 Xiaoyu Shi Keyan Sun Yan Kou Pratteek Das Yangeng Li Xinyu Zhang Srikanth Mateti Ying Chen Zhong‑Shuai Wu Quan Shi 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第2期259-270,共12页
Phase change materials have a key role for wearable thermal management,but suffer from poor water vapor permeability,low enthalpy value and weak shape stability caused by liquid phase leakage and intrinsic rigidity of... Phase change materials have a key role for wearable thermal management,but suffer from poor water vapor permeability,low enthalpy value and weak shape stability caused by liquid phase leakage and intrinsic rigidity of solid–liquid phase change materials.Herein,we report for the first time a versatile strategy for designed assembly of high-enthalpy flexible phase change nonwovens(GB-PCN)by wet-spinning hybrid grapheneboron nitride(GB)fiber and subsequent impregnating paraffins(e.g.,eicosane,octadecane).As a result,our GB-PCN exhibited an unprecedented enthalpy value of 206.0 J g^(−1),excellent thermal reliability and anti-leakage capacity,superb thermal cycling ability of 97.6%after 1000 cycles,and ultrahigh water vapor permeability(close to the cotton),outperforming the reported PCM films and fibers to date.Notably,the wearable thermal management systems based on GB-PCN for both clothing and face mask were demonstrated,which can maintain the human body at a comfortable temperature range for a significantly long time.Therefore,our results demonstrate huge potential of GB-PCN for human-wearable passive thermal management in real scenarios. 展开更多
关键词 Phase change materials GRAPHENE Boron nitride NONWOVEN wearable thermal management
下载PDF
Recent progress in graphene-based wearable piezoresistive sensors:From 1D to 3D device geometries 被引量:1
7
作者 Kai-Yue Chen Yun-Ting Xu +3 位作者 Yang Zhao Jun-Kai Li Xiao-Peng Wang Liang-Ti Qu 《Nano Materials Science》 EI CAS CSCD 2023年第3期247-264,共18页
Electronic skin and flexible wearable devices have attracted tremendous attention in the fields of human-machine interaction,energy storage,and intelligent robots.As a prevailing flexible pressure sensor with high per... Electronic skin and flexible wearable devices have attracted tremendous attention in the fields of human-machine interaction,energy storage,and intelligent robots.As a prevailing flexible pressure sensor with high performance,the piezoresistive sensor is believed to be one of the fundamental components of intelligent tactile skin.Furthermore,graphene can be used as a building block for highly flexible and wearable piezoresistive sensors owing to its light weight,high electrical conductivity,and excellent mechanical.This review provides a comprehensive summary of recent advances in graphene-based piezoresistive sensors,which we systematically classify as various configurations including one-dimensional fiber,two-dimensional thin film,and threedimensional foam geometries,followed by examples of practical applications for health monitoring,human motion sensing,multifunctional sensing,and system integration.We also present the sensing mechanisms and evaluation parameters of piezoresistive sensors.This review delivers broad insights on existing graphene-based piezoresistive sensors and challenges for the future generation of high-performance,multifunctional sensors in various applications. 展开更多
关键词 Piezoresistive sensors GRAPHENE Electronic skin Flexible and wearable devices
下载PDF
Integrated photonic convolution acceleration core for wearable devices 被引量:1
8
作者 Baiheng Zhao Junwei Cheng +3 位作者 Bo Wu Dingshan Gao Hailong Zhou Jianji Dong 《Opto-Electronic Science》 2023年第12期16-25,共10页
With the advancement of deep learning and neural networks,the computational demands for applications in wearable devices have grown exponentially.However,wearable devices also have strict requirements for long battery... With the advancement of deep learning and neural networks,the computational demands for applications in wearable devices have grown exponentially.However,wearable devices also have strict requirements for long battery life,low power consumption,and compact size.In this work,we propose a scalable optoelectronic computing system based on an integrated optical convolution acceleration core.This system enables high-precision computation at the speed of light,achieving 7-bit accuracy while maintaining extremely low power consumption.It also demonstrates peak throughput of 3.2 TOPS(tera operations per second)in parallel processing.We have successfully demonstrated image convolution and the typical application of an interactive first-person perspective gesture recognition application based on depth information.The system achieves a comparable recognition accuracy to traditional electronic computation in all blind tests. 展开更多
关键词 optoelectronic compute wearable devices micro-ring resonator hand gesture recognition
下载PDF
Rational Design of Cellulosic Triboelectric Materials for Self‑Powered Wearable Electronics
9
作者 Xiangjiang Meng Chenchen Cai +4 位作者 Bin Luo Tao Liu Yuzheng Shao Shuangfei Wang Shuangxi Nie 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期309-354,共46页
With the rapid development of the Internet of Things and flexible electronic technologies,there is a growing demand for wireless,sustainable,multifunctional,and independently operating self-powered wearable devices.Ne... With the rapid development of the Internet of Things and flexible electronic technologies,there is a growing demand for wireless,sustainable,multifunctional,and independently operating self-powered wearable devices.Nevertheless,structural flexibility,long operating time,and wearing comfort have become key requirements for the widespread adoption of wearable electronics.Triboelectric nanogenerators as a distributed energy harvesting technology have great potential for application development in wearable sensing.Compared with rigid electronics,cellulosic self-powered wearable electronics have significant advantages in terms of flexibility,breathability,and functionality.In this paper,the research progress of advanced cellulosic triboelectric materials for self-powered wearable electronics is reviewed.The interfacial characteristics of cellulose are introduced from the top-down,bottom-up,and interfacial characteristics of the composite material preparation process.Meanwhile,the modulation strategies of triboelectric properties of cellulosic triboelectric materials are presented.Furthermore,the design strategies of triboelectric materials such as surface functionalization,interfacial structure design,and vacuum-assisted self-assembly are systematically discussed.In particular,cellulosic self-powered wearable electronics in the fields of human energy harvesting,tactile sensing,health monitoring,human–machine interaction,and intelligent fire warning are outlined in detail.Finally,the current challenges and future development directions of cellulosic triboelectric materials for self-powered wearable electronics are discussed. 展开更多
关键词 Cellulose Triboelectric nanogenerator Triboelectric materials Self-powered sensing wearable electronics
下载PDF
Wearable sweat biosensors on textiles for health monitoring
10
作者 Yuqing Shi Ziyu Zhang +2 位作者 Qiyao Huang Yuanjing Lin Zijian Zheng 《Journal of Semiconductors》 EI CAS CSCD 2023年第2期11-24,共14页
With the rapid technological innovation in materials engineering and device integration,a wide variety of textilebased wearable biosensors have emerged as promising platforms for personalized healthcare,exercise monit... With the rapid technological innovation in materials engineering and device integration,a wide variety of textilebased wearable biosensors have emerged as promising platforms for personalized healthcare,exercise monitoring,and pre-diagnostics.This paper reviews the recent progress in sweat biosensors and sensing systems integrated into textiles for wearable body status monitoring.The mechanisms of biosensors that are commonly adopted for biomarkers analysis are first introduced.The classification,fabrication methods,and applications of textile conductors in different configurations and dimensions are then summarized.Afterward,innovative strategies to achieve efficient sweat collection with textile-based sensing patches are presented,followed by an in-depth discussion on nanoengineering and system integration approaches for the enhancement of sensing performance.Finally,the challenges of textile-based sweat sensing devices associated with the device reusability,washability,stability,and fabrication reproducibility are discussed from the perspective of their practical applications in wearable healthcare. 展开更多
关键词 BIOSENSOR textile-based electronics wearable device sweat analysis health monitoring
下载PDF
Functionalized Hydrogel-Based Wearable Gas and Humidity Sensors
11
作者 Yibing Luo Jianye Li +3 位作者 Qiongling Ding Hao Wang Chuan Liu Jin Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期103-147,共45页
Breathing is an inherent human activity;however,the composition of the air we inhale and gas exhale remains unknown to us.To address this,wearable vapor sensors can help people monitor air composition in real time to ... Breathing is an inherent human activity;however,the composition of the air we inhale and gas exhale remains unknown to us.To address this,wearable vapor sensors can help people monitor air composition in real time to avoid underlying risks,and for the early detection and treatment of diseases for home healthcare.Hydrogels with three-dimensional polymer networks and large amounts of water molecules are naturally flexible and stretchable.Functionalized hydrogels are intrinsically conductive,self-healing,self-adhesive,biocompatible,and room-temperature sensitive.Compared with traditional rigid vapor sensors,hydrogel-based gas and humidity sensors can directly fit human skin or clothing,and are more suitable for real-time monitoring of personal health and safety.In this review,current studies on hydrogel-based vapor sensors are investigated.The required properties and optimization methods of wearable hydrogel-based sensors are introduced.Subsequently,existing reports on the response mechanisms of hydrogel-based gas and humidity sensors are summarized.Related works on hydrogel-based vapor sensors for their application in personal health and safety monitoring are presented.Moreover,the potential of hydrogels in the field of vapor sensing is elucidated.Finally,the current research status,challenges,and future trends of hydrogel gas/humidity sensing are discussed. 展开更多
关键词 Health and safety monitoring Gas and humidity sensor Functionalized hydrogel wearable sensor Flexible and stretchable sensor
下载PDF
Wearable and stretchable conductive polymer composites for strain sensors:How to design a superior one?
12
作者 Liwei Lin Sumin Park +6 位作者 Yuri Kim Minjun Bae Jeongyeon Lee Wang Zhang Jiefeng Gao Sun Ha Paek Yuanzhe Piao 《Nano Materials Science》 EI CAS CSCD 2023年第4期392-403,共12页
Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring,flexible electronics,and soft robotic skin.The wearable and stretchable strain sensors can be directly ... Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring,flexible electronics,and soft robotic skin.The wearable and stretchable strain sensors can be directly attached to human skin,providing visualized detection for human motions and personal healthcare.Conductive polymer composites(CPC)composed of conductive fillers and flexible polymers have the advantages of high stretchability,good flexibility,superior durability,which can be used to prepare flexible strain sensors with large working strain and outstanding sensitivity.This review has put forward a comprehensive summary on the fabrication methods,advanced mechanisms and strain sensing abilities of CPC strain sensors reported in recent years,especially the sensors with superior performance.Finally,the structural design,bionic function,integration technology and further application of CPC strain sensors are prospected. 展开更多
关键词 wearable strain sensors Conductive polymer composites MECHANISM Sensing performance
下载PDF
Inducing Fe 3d Electron Delocalization and Spin‑State Transition of FeN_(4) Species Boosts Oxygen Reduction Reaction for Wearable Zinc–Air Battery
13
作者 Shengmei Chen Xiongyi Liang +7 位作者 Sixia Hu Xinliang Li Guobin Zhang Shuyun Wang Longtao Ma Chi‑Man Lawrence Wu Chunyi Zhi Juan Antonio Zapien 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期23-39,共17页
Transition metal-nitrogen-carbon materials(M-N-Cs),particularly Fe-N-Cs,have been found to be electroactive for accelerating oxygen reduction reaction(ORR)kinetics.Although substantial efforts have been devoted to des... Transition metal-nitrogen-carbon materials(M-N-Cs),particularly Fe-N-Cs,have been found to be electroactive for accelerating oxygen reduction reaction(ORR)kinetics.Although substantial efforts have been devoted to design Fe-N-Cs with increased active species content,surface area,and electronic conductivity,their performance is still far from satisfactory.Hitherto,there is limited research about regulation on the electronic spin states of Fe centers for Fe-N-Cs electrocatalysts to improve their catalytic performance.Here,we introduce Ti_(3)C_(2) MXene with sulfur terminals to regulate the electronic configuration of FeN_(4) species and dramatically enhance catalytic activity toward ORR.The MXene with sulfur terminals induce the spin-state transition of FeN_(4) species and Fe 3d electron delocalization with d band center upshift,enabling the Fe(II)ions to bind oxygen in the end-on adsorption mode favorable to initiate the reduction of oxygen and boosting oxygen-containing groups adsorption on FeN_(4) species and ORR kinetics.The resulting FeN_(4)-Ti_(3)C_(2)Sx exhibits comparable catalytic performance to those of commercial Pt-C.The developed wearable ZABs using FeN_(4)-Ti_(3)C_(2)Sx also exhibit fast kinetics and excellent stability.This study confirms that regulation of the electronic structure of active species via coupling with their support can be a major contributor to enhance their catalytic activity. 展开更多
关键词 Fe 3d electron delocalization Spin-state transition Oxygen reduction reaction wearable zinc-air batteries
下载PDF
Review:Wearable Sweat Sensors for Diseases Prevention and Monitoring
14
作者 Yanan Ding Haiying Xiao Ping’an Hu 《Journal of Harbin Institute of Technology(New Series)》 CAS 2023年第3期1-21,共21页
Advanced in wireless technologies and flexible materials with great biocompatibility,wearable devices have been utilized in the field of healthcare,sports management,and diseases prevention,which have been widely appl... Advanced in wireless technologies and flexible materials with great biocompatibility,wearable devices have been utilized in the field of healthcare,sports management,and diseases prevention,which have been widely applied in current electronic equipment.Sweat,as a common metabolite on the skin surface,contains a wealth of biomarkers for disease detection and diagnosis.Therefore,developing wearable sweat sensors can provide a non⁃invasive method for health data collecting,sports monitoring,and clinical diagnosis in a convenient way.Recent research in sweat metabolomics has offered a lot of information for sweat analysis and the wearable sweat sensors with small size,various sensing,and transmission units,and good skin contact has exhibited dynamic multi⁃signal detection.This article introduces the biomarkers in sweat related to different diseases and the current development of sweat sensors for user􀆳s activation monitoring and diseases detection.The barriers and difficulties in the future are also discussed and perspectives in the next generation sweat sensors are proposed. 展开更多
关键词 sweat sensor sweat metabolites disease monitoring wearable device
下载PDF
Automatic Recognition of Construction Worker Activities Using Deep Learning Approaches and Wearable Inertial Sensors
15
作者 Sakorn Mekruksavanich Anuchit Jitpattanakul 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2111-2128,共18页
The automated evaluation and analysis of employee behavior in an Industry 4.0-compliant manufacturingfirm are vital for the rapid and accurate diagnosis of work performance,particularly during the training of a new wor... The automated evaluation and analysis of employee behavior in an Industry 4.0-compliant manufacturingfirm are vital for the rapid and accurate diagnosis of work performance,particularly during the training of a new worker.Various techniques for identifying and detecting worker performance in industrial applications are based on computer vision techniques.Despite widespread com-puter vision-based approaches,it is challenging to develop technologies that assist the automated monitoring of worker actions at external working sites where cam-era deployment is problematic.Through the use of wearable inertial sensors,we propose a deep learning method for automatically recognizing the activities of construction workers.The suggested method incorporates a convolutional neural network,residual connection blocks,and multi-branch aggregate transformation modules for high-performance recognition of complicated activities such as con-struction worker tasks.The proposed approach has been evaluated using standard performance measures,such as precision,F1-score,and AUC,using a publicly available benchmark dataset known as VTT-ConIoT,which contains genuine con-struction work activities.In addition,standard deep learning models(CNNs,RNNs,and hybrid models)were developed in different empirical circumstances to compare them to the proposed model.With an average accuracy of 99.71%and an average F1-score of 99.71%,the experimentalfindings revealed that the suggested model could accurately recognize the actions of construction workers.Furthermore,we examined the impact of window size and sensor position on the identification efficiency of the proposed method. 展开更多
关键词 Complex human activity recognition wearable inertial sensors deep learning construction workers automatic recognition
下载PDF
Deep Pyramidal Residual Network for Indoor-Outdoor Activity Recognition Based on Wearable Sensor
16
作者 Sakorn Mekruksavanich Narit Hnoohom Anuchit Jitpattanakul 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2669-2686,共18页
Recognition of human activity is one of the most exciting aspects of time-series classification,with substantial practical and theoretical impli-cations.Recent evidence indicates that activity recognition from wearabl... Recognition of human activity is one of the most exciting aspects of time-series classification,with substantial practical and theoretical impli-cations.Recent evidence indicates that activity recognition from wearable sensors is an effective technique for tracking elderly adults and children in indoor and outdoor environments.Consequently,researchers have demon-strated considerable passion for developing cutting-edge deep learning sys-tems capable of exploiting unprocessed sensor data from wearable devices and generating practical decision assistance in many contexts.This study provides a deep learning-based approach for recognizing indoor and outdoor movement utilizing an enhanced deep pyramidal residual model called Sen-PyramidNet and motion information from wearable sensors(accelerometer and gyroscope).The suggested technique develops a residual unit based on a deep pyramidal residual network and introduces the concept of a pyramidal residual unit to increase detection capability.The proposed deep learning-based model was assessed using the publicly available 19Nonsens dataset,which gathered motion signals from various indoor and outdoor activities,including practicing various body parts.The experimental findings demon-strate that the proposed approach can efficiently reuse characteristics and has achieved an identification accuracy of 96.37%for indoor and 97.25%for outdoor activity.Moreover,comparison experiments demonstrate that the SenPyramidNet surpasses other cutting-edge deep learning models in terms of accuracy and F1-score.Furthermore,this study explores the influence of several wearable sensors on indoor and outdoor action recognition ability. 展开更多
关键词 Human activity recognition deep learning wearable sensors indoor and outdoor activity deep pyramidal residual network
下载PDF
Higher Order OAM Mode Generation Using Wearable Antenna for 5G NR Bands
17
作者 Shehab Khan Noor Arif Mawardi Ismail +6 位作者 Mohd Najib Mohd Yasin Mohamed Nasrun Osman Thennarasan Sabapathy Shakhirul Mat Salleh Ping Jack Soh Ali Hanafiah Rambe Nurulazlina Ramli 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期537-551,共15页
This paper presents a flexible and wearable textile array antenna designed to generate Orbital Angular Momentum(OAM)waves with Mode+2 at 3.5 GHz(3.4 to 3.6 GHz)of the sub-6 GHz fifth-generation(5G)New Radio(NR)band.Th... This paper presents a flexible and wearable textile array antenna designed to generate Orbital Angular Momentum(OAM)waves with Mode+2 at 3.5 GHz(3.4 to 3.6 GHz)of the sub-6 GHz fifth-generation(5G)New Radio(NR)band.The proposed antenna is based on a uniform circular array of eight microstrip patch antennas on a felt textile substrate.In contrast to previous works involving the use of rigid substrates to generate OAM waves,this work explored the use of flexible substrates to generate OAM waves for the first time.Other than that,the proposed antenna was simulated,analyzed,fabricated,and tested to confirm the generation of OAMMode+2.With the same design,OAM Mode−2 can be generated readily simply by mirror imaging the feed network.Note that the proposed antenna operated at the desired frequency of 3.5 GHz with an overall bandwidth of 400 MHz in free space.Moreover,mode purity analysis is carried out to verify the generation of OAM Mode+2,and the purity obtained was 41.78%at free space flat condition.Furthermore,the effect of antenna bending on the purity of the generated OAM mode is also investigated.Lastly,the influence of textile properties on OAM modes is examined to assist future researchers in choosing suitable fabrics to design flexible OAM-based antennas.After a comprehensive analysis considering different factors related to wearable applications,this paper demonstrates the feasibility of generating OAMwaves using textile antennas.Furthermore,as per the obtained Specific Absorption Rate(SAR),it is found that the proposed antenna is safe to be deployed.The findings of this work have a significant implication for body-centric communications. 展开更多
关键词 wearable antenna OAM vortex waves 5G textile antenna microstrip patch antenna specific absorption rate(SAR)
下载PDF
The Effect of Wearable and Tearable Climate and Weather on Wearable Technology
18
作者 Vijayan Gurumurthy Iyer 《Journal of Energy and Power Engineering》 CAS 2023年第4期152-162,共11页
This article discusses the effect of wearable tearable climate and weather on wearable technology.Climate change refers to long-term shifts in temperature and weather patterns,mainly caused by human activities,especia... This article discusses the effect of wearable tearable climate and weather on wearable technology.Climate change refers to long-term shifts in temperature and weather patterns,mainly caused by human activities,especially the burning of fossil fuels and unsustainable infrastructural development.SEA(strategic environmental assessment)process can be broadly defined as a study of the impacts of a proposed project,plan,project,policy,or legislative action on the environment and sustainability.The significance of the work entitled“Sustainable Wearable Climate and Weather Management”is mainly confirmatory as it solves environmental and social problems.In this research,the SEA process has been aimed to incorporate environmental and sustainability factors into wearable climate and weather management includes climate change and control as an example like production and manufacturing process project planning and decision-making processes such as project formulation and appraisal of wearable climate and weather projects like wear and tear of dust-producing grinding chrome composite leather clad rollers and washers commonly used in seed-cotton Indian roller ginning machines,wastewater treatment process,rotating biological contactors,trickling filter bed,biomedical parts,marine biopolymers,Indo-Matsushita midget electrode(battery carbon rod)plant in 1979 at Tada,sustainable bridge,road,and sanitation structure,green building,nuclear power plant,cotton roller ginning plant and concrete that included policies,programs,plans,and legislative actions.Sustainable materials for manufacturing process development is a kind of development that meets the needs of the present without compromising the ability and efficacy of future generations to meet their own needs.EIA(environmental impact assessment)process can be defined as the systematic study of the potential impacts(effects)of proposed projects,plans,programs,policies,or legislative actions relative to the physical-chemical,biological,bio-medical,cultural,and socioeconomic components of the total environmental product life cycle.The primary purpose of the EIA process is to encourage the consideration of the environment in the Organizational wearable and tearable climate and weather management project planning and decision-making process and to arrive at environmentally compatible actions.The sustainable wearable climate and weather management process should include the integrated consideration of technical or engineering,economic,environmental,safety,and health,social,and sustainability factors to achieve business excellence as per post COVID-19 World Scenario.Before the NEPA(National Environmental Policy Act)process in 1970 in the USA,technical and economic factors dominance the world’s manufacturing process projects.The objective of the study is to conceptualize a training course module incorporating the SEA process for the Sustainable Environmental Wearable and Tearable Climate Change and Weather Control for the officers of BIPARD(Bihar Institute Public Administration and Rural Development),Patna,and Gaya,Bihar,India,during the RY(research year)2023-2024.The design of the study is cross-sectional.The limitation or recommendation of the study and check is to apply SEA process for sustainable environmental climate change and control towards sustainable development. 展开更多
关键词 CLIMATE CHANGE environment HEALTH impact tearable WEATHER wearable.
下载PDF
Wearable Smart Sensor System for Medical Monitoring with an Assessment of the Level of Blood Loss and Pain Shock Because of Trauma or Injury
19
作者 Volodymyr Romanov Igor Galelyuka +1 位作者 Ozar Mintser Ilia Brondz 《International Journal of Analytical Mass Spectrometry and Chromatography》 2023年第2期11-21,共11页
Blood loss in peacetime is mainly due to the normal menstrual cycle in women or diseases with surgical intervention. In wartime, blood loss in military personnel is a characteristic sign of a closed or open injury of ... Blood loss in peacetime is mainly due to the normal menstrual cycle in women or diseases with surgical intervention. In wartime, blood loss in military personnel is a characteristic sign of a closed or open injury of the body during internal or external bleeding. Access to clinical care for wounded military personnel injured on the battlefield is limited and has long delays compared to patients in peacetime. Most of the deaths of wounded military personnel on the battlefield occur within the first hour after being wounded. The most common causes are delay in providing medical care, loss of time for diagnosis, delay in stabilization of pain shock and large blood loss. Some help in overcoming these problems is provided by the data in the individual capsule, which each soldier of the modern army possesses;however, data in an individual capsule is not sufficient to provide emergency medical care in field and hospital conditions. This paper considers a project for development of a smart real-time monitoring wearable system for blood loss and level of shock stress in wounded persons on the battlefield, which provides medical staff in field and hospital conditions with the necessary information to give timely medical care. Although the hospital will require additional information, the basic information about the victims will already be known before he enters the hospital. It is important to emphasize that the key term in this approach is monitoring. It is tracking, and not a one-time measurement of indicators, that is crucial in a valid definition of bleeding. 展开更多
关键词 Smart System Blood Loss Monitoring Shock Index Smart wearable Monitoring System
下载PDF
Emerging wearable technology applications in gastroenterology:A review of the literature 被引量:1
20
作者 Kimberly PL Chong Benjamin KP Woo 《World Journal of Gastroenterology》 SCIE CAS 2021年第12期1149-1160,共12页
The field of gastroenterology has recently seen a surge in wearable technology to monitor physical activity,sleep quality,pain,and even gut activity.The past decade has seen the emergence of wearable devices including... The field of gastroenterology has recently seen a surge in wearable technology to monitor physical activity,sleep quality,pain,and even gut activity.The past decade has seen the emergence of wearable devices including Fitbit,Apple Watch,AbStats,and ingestible sensors.In this review,we discuss current and future devices designed to measure sweat biomarkers,steps taken,sleep efficiency,gastric electrical activity,stomach pH,and intestinal contents.We also summarize several clinical studies to better understand wearable devices so that we may assess their potential benefit in improving healthcare while also weighing the challenges that must be addressed. 展开更多
关键词 wearable technology wearables Ingestibles SMARTPHONE Remote patient monitoring GASTROENTEROLOGY
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部