Inspired by the sophisticated artificial leather garment industry and toward enhancing wearability of energy storage devices, we demonstrate a polyurethane artificial leather supercapacitor with large sheet electrodes...Inspired by the sophisticated artificial leather garment industry and toward enhancing wearability of energy storage devices, we demonstrate a polyurethane artificial leather supercapacitor with large sheet electrodes embedded in theleather layer simultaneously working as a polyelectrolyte. This design totally reserves textiles underneath and thus addresses the well-known challenge of wearing comfortability. It provides a revolutionary configuration of wearable supercapacitors: the artificial leather on garment is also a supercapacitor.Unlike the polyvinyl alcohol-based acidic electrolytes, which are widely used, sodium chloride is used to modify the intrinsically fluorescent polyurethane leather for ionic transportation, which has no harm to human. The fluorescent leather supercapacitor is easily transferrable from any arbitrary substrates to form various patterns, enabling multifunctionalities of practical wearability, fashion, and energy storage.展开更多
Integration can diversify the function of a device with the same volume, therefore it facilitates the development of portable, wearable and flexible electronics. In this review, we described several kinds of novel and...Integration can diversify the function of a device with the same volume, therefore it facilitates the development of portable, wearable and flexible electronics. In this review, we described several kinds of novel and unconventional multifunctional integrated supercapacitors which can not only be used to storage energy but also be applied to other fields such as photodetecting, electrochromics, monitoring physiological/mechanical activities, gas sensor, and so on. First, a brief introduction of the significance and advantages of multifunctional integrated supercapacitors was presented. Then we outlined the enormous progress which has been made in the area of multifunctional integrated supercapacitors. In the end, the prospects and further developments in this exciting field were also suggested.展开更多
基金Funding of Harbin Institute of Technology (Shenzhen) (DD45001015)NSFC/RGC Joint Research Scheme (Project N_City U123/15)+2 种基金the Science Technology and Innovation Committee of Shenzhen Municipality (JCYJ20130401145617276 and R-IND4903)City University of Hong Kong (PJ7004645)the Hong Kong Polytechnic University (1-BBA3) supported this work
文摘Inspired by the sophisticated artificial leather garment industry and toward enhancing wearability of energy storage devices, we demonstrate a polyurethane artificial leather supercapacitor with large sheet electrodes embedded in theleather layer simultaneously working as a polyelectrolyte. This design totally reserves textiles underneath and thus addresses the well-known challenge of wearing comfortability. It provides a revolutionary configuration of wearable supercapacitors: the artificial leather on garment is also a supercapacitor.Unlike the polyvinyl alcohol-based acidic electrolytes, which are widely used, sodium chloride is used to modify the intrinsically fluorescent polyurethane leather for ionic transportation, which has no harm to human. The fluorescent leather supercapacitor is easily transferrable from any arbitrary substrates to form various patterns, enabling multifunctionalities of practical wearability, fashion, and energy storage.
基金financial support of the National Natural Science Foundation of China(No.51502009)the Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle(No.ST201522008)
文摘Integration can diversify the function of a device with the same volume, therefore it facilitates the development of portable, wearable and flexible electronics. In this review, we described several kinds of novel and unconventional multifunctional integrated supercapacitors which can not only be used to storage energy but also be applied to other fields such as photodetecting, electrochromics, monitoring physiological/mechanical activities, gas sensor, and so on. First, a brief introduction of the significance and advantages of multifunctional integrated supercapacitors was presented. Then we outlined the enormous progress which has been made in the area of multifunctional integrated supercapacitors. In the end, the prospects and further developments in this exciting field were also suggested.