Let M^n be a compact Willmore submanifold in the unit sphere Sn+p. In this note, we investigate the first eigenvalue of the SchrSdinger operator L = -△ - q on M, where q is some potential function on M, and present...Let M^n be a compact Willmore submanifold in the unit sphere Sn+p. In this note, we investigate the first eigenvalue of the SchrSdinger operator L = -△ - q on M, where q is some potential function on M, and present a gap estimate for the first eigenvalue of L.展开更多
Let M be a closed Willmore hypersurface in the sphere S^n+1(1) (n ≥ 2) with the same mean curvature of the Willmore torus Wm,n-m, if SpecP(M) = Spec^P(Wm,n-m ) (p = 0, 1,2), then M is Wm,n-m.
Let M be a compact convex hypersurface of class C2, which is assumed to bound a nonempty convex body K in the Euclidean space Rn and H be the mean curvature of M. We obtain a lower bound of the total square of mean cu...Let M be a compact convex hypersurface of class C2, which is assumed to bound a nonempty convex body K in the Euclidean space Rn and H be the mean curvature of M. We obtain a lower bound of the total square of mean curvature fM H2dA The bound is the Minkowski quermassintegral of the convex body K. The total square of mean curvature attains the lower bound when M is an (n - 1)-sphere.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11701565)the Research Project of National University of Defense Technology(Grant No.ZK17-03-29)。
基金Supported by the National Natural Science Foundation of China(11071211)the Zhejiang Natural Science Foundation of China
文摘Let M^n be a compact Willmore submanifold in the unit sphere Sn+p. In this note, we investigate the first eigenvalue of the SchrSdinger operator L = -△ - q on M, where q is some potential function on M, and present a gap estimate for the first eigenvalue of L.
文摘Let M be a closed Willmore hypersurface in the sphere S^n+1(1) (n ≥ 2) with the same mean curvature of the Willmore torus Wm,n-m, if SpecP(M) = Spec^P(Wm,n-m ) (p = 0, 1,2), then M is Wm,n-m.
文摘Let M be a compact convex hypersurface of class C2, which is assumed to bound a nonempty convex body K in the Euclidean space Rn and H be the mean curvature of M. We obtain a lower bound of the total square of mean curvature fM H2dA The bound is the Minkowski quermassintegral of the convex body K. The total square of mean curvature attains the lower bound when M is an (n - 1)-sphere.