We studied the effect of wollastonite nanofibers on fluid flow in medium-density fiberboard (MDF). Nanowollastonite (NW) was applied in MDF at 10 %, based on the dry weight of wood fibers. We also tested chicken f...We studied the effect of wollastonite nanofibers on fluid flow in medium-density fiberboard (MDF). Nanowollastonite (NW) was applied in MDF at 10 %, based on the dry weight of wood fibers. We also tested chicken feathers as an additive to the matrix at 5 and 10 % by weight. The weight of feathers was reduced from the wood fibers to keep the density of the panels constant (0.66 g cm-3). Wollastonite nanofibers acted as filler in the matrix and significantly decreased gas and liquid perme- ability. Higher thermal conductivity of the N-W-treated MDF-mats resulted in a better cure of resin, and conse- quently more integrity in the composite-matrix and lower permeability. The water-repellant property of wollastonite also contributed to the decrease in liquid permeability. Feathers reduced gas and liquid permeability due to the hydrophobic nature of keratin, as well as its formation as a physical barrier towards passing of fluids. Ten percent feather content proved too high and some checks and cracks occurred in the core of the panels after hot-pressing. Panels with 5 %-feather content resulted in both lower fluid flow and adequate physical integrity in the core sec- tion of the MDF-matrix.展开更多
基金supported by Shahid Rajaee Teacher Training University
文摘We studied the effect of wollastonite nanofibers on fluid flow in medium-density fiberboard (MDF). Nanowollastonite (NW) was applied in MDF at 10 %, based on the dry weight of wood fibers. We also tested chicken feathers as an additive to the matrix at 5 and 10 % by weight. The weight of feathers was reduced from the wood fibers to keep the density of the panels constant (0.66 g cm-3). Wollastonite nanofibers acted as filler in the matrix and significantly decreased gas and liquid perme- ability. Higher thermal conductivity of the N-W-treated MDF-mats resulted in a better cure of resin, and conse- quently more integrity in the composite-matrix and lower permeability. The water-repellant property of wollastonite also contributed to the decrease in liquid permeability. Feathers reduced gas and liquid permeability due to the hydrophobic nature of keratin, as well as its formation as a physical barrier towards passing of fluids. Ten percent feather content proved too high and some checks and cracks occurred in the core of the panels after hot-pressing. Panels with 5 %-feather content resulted in both lower fluid flow and adequate physical integrity in the core sec- tion of the MDF-matrix.