In the paper we discuss the Wronskian solutions of modified Korteweg-de Vries equation (mKdV) via the Backlund transformation (BT) and a generalized Wronskian condition is given, which allows us to substitute an a...In the paper we discuss the Wronskian solutions of modified Korteweg-de Vries equation (mKdV) via the Backlund transformation (BT) and a generalized Wronskian condition is given, which allows us to substitute an arbitrary coefficient matrix in the GN (t) for the original diagonal one.展开更多
In this paper, the (2+ 1)-dimensional soliton equation is mainly being discussed. Based on the Hirota direct method, Wronskian technique and the Pfattlan properties, the N-soliton solution, Wronskian and Grammian s...In this paper, the (2+ 1)-dimensional soliton equation is mainly being discussed. Based on the Hirota direct method, Wronskian technique and the Pfattlan properties, the N-soliton solution, Wronskian and Grammian solutions have been generated.展开更多
By truncating the Painleve expansion at the constant level term,the Hirota bilinear form is obtainedfor a (3+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation.Based on its bilinear form,solitary-wave...By truncating the Painleve expansion at the constant level term,the Hirota bilinear form is obtainedfor a (3+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation.Based on its bilinear form,solitary-wavesolutions are constructed via the ε-expansion method and the corresponding graphical analysis is given.Furthermore,the exact solution in the Wronskian form is presented and proved by direct substitution into the bilinear equation.展开更多
The (2+1)-dimensional BKP equation in the Hirota bilinear form is studied during this work. Wronskian and Grammian techniques are applied to the construction of Wronskian and Grammian solutions of this equation, re...The (2+1)-dimensional BKP equation in the Hirota bilinear form is studied during this work. Wronskian and Grammian techniques are applied to the construction of Wronskian and Grammian solutions of this equation, respectively. It is shown that these solutions can be expressed as not only Pfaffians but also Wronskians and Grammians.展开更多
A linear superposition is studied for Wronskian rational solutions to the Kd V equation,which include rogue wave solutions.It is proved that it is equivalent to a polynomial identity that an arbitrary linear combinati...A linear superposition is studied for Wronskian rational solutions to the Kd V equation,which include rogue wave solutions.It is proved that it is equivalent to a polynomial identity that an arbitrary linear combination of two Wronskian polynomial solutions with a difference two between the Wronskian orders is again a solution to the bilinear Kd V equation.It is also conjectured that there is no other rational solutions among general linear superpositions of Wronskian rational solutions.展开更多
Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial d...Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial differential equations. Moreover, as applications, examples of Wronskian determinant solutions, including N-soliton solutions, periodic solutions and rational solutions, are computed.展开更多
1 Introduction Although partial differential equations that govern the motion of solitons are nonlinear, many of them can be put into the bilinear form. Hirota, in 1971, developed an ingenious method to obtain exact ...1 Introduction Although partial differential equations that govern the motion of solitons are nonlinear, many of them can be put into the bilinear form. Hirota, in 1971, developed an ingenious method to obtain exact solutions to nonlinear partial differential equations in the soliton theory, such as the KdV equation, the Boussinesq equation and the KP equation (see [1-2]).展开更多
基金National Natural Science Foundation of China under Grant Nos.10371070 and 10671121the Foundation of Shanghai Education Committee for Shanghai Prospective Excellent Young Teachers
文摘In the paper we discuss the Wronskian solutions of modified Korteweg-de Vries equation (mKdV) via the Backlund transformation (BT) and a generalized Wronskian condition is given, which allows us to substitute an arbitrary coefficient matrix in the GN (t) for the original diagonal one.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10771196 and 10831003the Natural Science Foundation of Zhejiang Province under Grant Nos.Y7080198 and R6090109
文摘In this paper, the (2+ 1)-dimensional soliton equation is mainly being discussed. Based on the Hirota direct method, Wronskian technique and the Pfattlan properties, the N-soliton solution, Wronskian and Grammian solutions have been generated.
基金Supported by the National Natural Science Foundation of China under Grant No.60772023the Open Fund of the State Key Laboratory of Software Development Environment under Grant No.BUAA-SKLSDE-09KF-04+1 种基金Beijing University of Aeronautics and Astronautics,by the National Basic Research Program of China (973 Program) under Grant No.2005CB321901the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos.20060006024 and 200800130006,the Ministry of Education
文摘By truncating the Painleve expansion at the constant level term,the Hirota bilinear form is obtainedfor a (3+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation.Based on its bilinear form,solitary-wavesolutions are constructed via the ε-expansion method and the corresponding graphical analysis is given.Furthermore,the exact solution in the Wronskian form is presented and proved by direct substitution into the bilinear equation.
基金supported by the National Natural Science Foundation of China(11202161 and 11172233)the Basic Research Fund of the Northwestern Polytechnical University(GBKY1034)
文摘The (2+1)-dimensional BKP equation in the Hirota bilinear form is studied during this work. Wronskian and Grammian techniques are applied to the construction of Wronskian and Grammian solutions of this equation, respectively. It is shown that these solutions can be expressed as not only Pfaffians but also Wronskians and Grammians.
基金supported in part by NSFC under the Grant Nos.11975145 and 11972291。
文摘A linear superposition is studied for Wronskian rational solutions to the Kd V equation,which include rogue wave solutions.It is proved that it is equivalent to a polynomial identity that an arbitrary linear combination of two Wronskian polynomial solutions with a difference two between the Wronskian orders is again a solution to the bilinear Kd V equation.It is also conjectured that there is no other rational solutions among general linear superpositions of Wronskian rational solutions.
基金Supported by the National Natural Science Foundation of China under Grant No.11171312
文摘Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial differential equations. Moreover, as applications, examples of Wronskian determinant solutions, including N-soliton solutions, periodic solutions and rational solutions, are computed.
基金Project supported by the State Administration of Foreign Experts Affairs of Chinathe National Natural Science Foundation of China (Nos. 10831003,61072147,11071159)+2 种基金the Shanghai Municipal Natural Science Foundation (No. 09ZR1410800)the Shanghai Leading Academic Discipline Project (No.J50101)TUBITAK (the Scientific and Technological Research Council of Turkey) for its financial support and grant for the research entitled "Integrable Systems and Soliton Theory" at University of South Florida
文摘1 Introduction Although partial differential equations that govern the motion of solitons are nonlinear, many of them can be put into the bilinear form. Hirota, in 1971, developed an ingenious method to obtain exact solutions to nonlinear partial differential equations in the soliton theory, such as the KdV equation, the Boussinesq equation and the KP equation (see [1-2]).