针对逐步Ⅱ型删失数据下Burr Type X分布的参数估计问题,提出模型参数的一种新的贝叶斯估计及相应的最大后验密度(HPD)置信区间.假设伽玛分布为待估参数的先验分布,考虑待估参数的条件后验分布未知、单峰且近似对称,选取以正态分布为提...针对逐步Ⅱ型删失数据下Burr Type X分布的参数估计问题,提出模型参数的一种新的贝叶斯估计及相应的最大后验密度(HPD)置信区间.假设伽玛分布为待估参数的先验分布,考虑待估参数的条件后验分布未知、单峰且近似对称,选取以正态分布为提议分布的Metropolis-Hastings(MH)算法生成后验样本,基于后验样本在平方误差损失函数下得到待估参数的贝叶斯估计和HPD置信区间.将基于MH算法得到的贝叶斯估计和HPD置信区间与基于EM算法得到的极大似然估计和置信区间在均方误差准则和精度意义下进行比较.Monte-Carlo模拟结果表明,基于MH算法得到的估计在均方误差准则下优于基于EM算法得到的极大似然估计,基于MH算法得到的HPD置信区间长度小于基于EM算法得到的置信区间长度.展开更多
文摘针对逐步Ⅱ型删失数据下Burr Type X分布的参数估计问题,提出模型参数的一种新的贝叶斯估计及相应的最大后验密度(HPD)置信区间.假设伽玛分布为待估参数的先验分布,考虑待估参数的条件后验分布未知、单峰且近似对称,选取以正态分布为提议分布的Metropolis-Hastings(MH)算法生成后验样本,基于后验样本在平方误差损失函数下得到待估参数的贝叶斯估计和HPD置信区间.将基于MH算法得到的贝叶斯估计和HPD置信区间与基于EM算法得到的极大似然估计和置信区间在均方误差准则和精度意义下进行比较.Monte-Carlo模拟结果表明,基于MH算法得到的估计在均方误差准则下优于基于EM算法得到的极大似然估计,基于MH算法得到的HPD置信区间长度小于基于EM算法得到的置信区间长度.