As one of the micro-blocks dispersed in the South China Sea(SCS), the basement of the Xisha Islands has rarely been drilled because of the thick overlying Cenozoic sediments, which has led to a confused understanding ...As one of the micro-blocks dispersed in the South China Sea(SCS), the basement of the Xisha Islands has rarely been drilled because of the thick overlying Cenozoic sediments, which has led to a confused understanding of the pre-Cenozoic basement of the Xisha Islands. Well CK-1, a kilometer-scale major scientific drill in the Xisha Islands in the northwestern SCS, penetrated thick reefal limestone(0–888.4 m) and the underlying basement rocks(888.4–901.4 m). In this study, we present the zircon U-Pb ages of basement basaltic pyroclastic rocks from Well CK-1 in the Xisha Islands of the northwestern SCS to investigate the basement nature of the Xisha microblock. The basement of Well CK-1 consists of basaltic pyroclastic rocks on the seamount. The zircon grains yielded apparent ages ranging from ca. 2 138.9 Ma to ca. 36 Ma. The old group of zircon grains from Well CK-1 was considered to be inherited zircons. Two Cenozoic zircons gave a weighted mean 206Pb/238U age of(36.3 ± 1.1) Ma,Mean Squared Weighted Deviations(MSWD) = 1.2, which may represent the maximum age of the volcano eruption. The Yanshanian inherited zircons(116.9–105.7 Ma and 146.1–130.2 Ma) from Well CK-1 are consistent with the zircons from Well XK-1, indicating that the basement of Chenhang Island may be similar to that of Well XK-1. We propose that the Xisha micro-block may have developed on a uniform Late Jurassic metamorphic crystalline basement, intruded by Cretaceous granitic magma.展开更多
Carbonate rocks are important reservoirs for global petroleum exploration.The largest oilfield in the South China Sea,Liuhua 11-1,is distributed in the massive carbonate reef area of the Zhujiang(Pearl)River Mouth Bas...Carbonate rocks are important reservoirs for global petroleum exploration.The largest oilfield in the South China Sea,Liuhua 11-1,is distributed in the massive carbonate reef area of the Zhujiang(Pearl)River Mouth Basin.Previous studies showed that one 802.17-m-long core from well Xichen-1 in the South China Sea mainly consisted of white and light gray-white organic reefs.Recently,a Miocene whole core(161.9 m long)of well Xiyong-2,near well Xichen-1,was found to contain six layers of yellowish brown,light yellowish gray,iron black,or light yellowish gray-white organic reefs.Scanning electron microscope images of these layers reveal a typical ferroan dolomite rich in Fe(up to 29%),with the high concentrations of Mn,Cu,W,Zn,Cr,Ni,and Co.Systematic X-ray powder diffraction analysis yields a 1.9–6.1 match in phase ratio with ankerite,5.4–26.9 with dolomite,and zero with calcite,which indicate that the samples can be classified as ferroan dolomite.The iron and heavy metals are inferred to be originated from multiple volcanic eruptions of Gaojianshi Island in the Dongdao Atoll during the middle-late Miocene.These elements were dissolved in seawater,likely as a sol,and carried to Yongxing Island in the Xuande Atoll by sea currents and tides enhanced by prevailing winds,and deposited as a part of the sedimentation process in the study area.The ferroan dolomite has Sr content of (125–285)×10^(-6),which is lower than the accepted Sr boundary value of dolomite.This finding suggests that dolomitization occurred during large-scale global glacial regression in the late Miocene.The isolated Xisha carbonate platform,exposed to air,underwent freshwater leaching and dolomitization induced by mixed water,and caused the extensive Fe-Mg exchange along the organic reef profile to form ankerite and ferroan dolomite.These results may help to understand paleoceanographic environmental changes in the South China Sea during the Miocene.展开更多
A recent island survey reveals that the Xuande Atoll and the Yongle Atoll in the Xisha Islands can be classified into one of two systems:the depleted atoll system and growth atoll system;the survey also indicates tha...A recent island survey reveals that the Xuande Atoll and the Yongle Atoll in the Xisha Islands can be classified into one of two systems:the depleted atoll system and growth atoll system;the survey also indicates that the decreased area of several shoals is an unbearable burden for the Xisha Islands, of which the largest island area is 2.13 km2 and the minimum elevation is 1.4 m. According to a survey on the ecological characteristics of Halimeda in the Laolongtou breaker zone of Shidao Island in the Xisha Islands, the green and white living Halimeda are collected, the isotopic ages of 14C contained in the Halimeda are shown to be 27 years and 55 years, respectively, and carbonate mainly occurs in five types, i.e., luster, segment, sand, sand grain, and marl in the formation. The Halimeda segments mainly provide the carbonate sediments of long-term biogenic deposits in the reef environment and the annual productivity per area is 60–100 g/m2;the characteristics of the microstructure of the Halimeda are analyzed, the aragonite raphide carbonate is deposited and enriched in the cortexes, medullas and cysts, and the Halimeda generally contain major elements such as C, O, Ca, Cl, Mg, K, Na, S and Al, and are rich in trace elements such as tellurium (Te), rhodium (Rh) and strontium. It is believed that the Halimeda grow slowly, including the biotic community of reef corals in the reef areas, thus they possess an environmental remediation capacity, but it takes much time to remedy the environment, and it is necessary to make the law to protect the diversity and vulnerability of the Xisha marine ecology, the ecology of the reef community and the island environment in a scientific way. As indicated in the survey, under the background of global warming and sea-level rise, the discovery of large amounts of Halimeda in the Laolongtou sea area is significant for the natural increase of the depleted atoll system of the Xuande Atoll, while the Halimeda segments represent the primary form of the fossil Halimeda, of which the species can be identified and preserved in great numbers under geological conditions. The Miocene was discovered in large amounts in the Xichen-1 well, therefore the study on the characteristics and mechanism of Halimeda carbonate sediments plays a pivotal role in the formation and construction of organic reefs in the South China Sea as well as oil and gas exploration.展开更多
The aeolianite deposits on Shidao Island of the Xisha Islands,the South China Sea,contain five stages of aeolian biocalcarenites and four paleosols.The aeolian biocalcarenites consist of two sedimentary facies:dune an...The aeolianite deposits on Shidao Island of the Xisha Islands,the South China Sea,contain five stages of aeolian biocalcarenites and four paleosols.The aeolian biocalcarenites consist of two sedimentary facies:dune and interdune deposits.In the dunes,large-scale festoon cross-bedding,humped cross-bedding and high-angle foreset bedding are well developed,and in the interdunes,large-scale flat-bedding and low-angle wedge shaped cross-bedding are well developed.The sedimentary structures and lamella features indicate that the aeolian deposits are driven mainly by the northeast monsoon.The aeolian biocalcarenite and paleosols may reflect the arid and humid climates of the East Asian monsoon,respectively.By comparison with the stalagmite oxygen isotope climosequence of Hulu Cave,Nanjing,we inferred that the aeolianite formed in the last glacial stage,and the paleosols were formed during relatively long-term warm events.展开更多
Symbiotic algae (Symbiodinium sp.) in scleractinian corals are important in understanding how coral reefs will respond to global climate change. The present paper reports on the diversity of Symbiodinium sp. in 48 s...Symbiotic algae (Symbiodinium sp.) in scleractinian corals are important in understanding how coral reefs will respond to global climate change. The present paper reports on the diversity of Symbiodinium sp. in 48 scleractinian coral species from 25 genera and 10 families sampled from the Xisha Islands in the South China Sea, which were identified with the use of restriction fragment length polymorphism (RFLP) of the nuclear ribosomal DNA large subunit gene (rDNA). The results showed that: (i) Symbiodinium Clade C was the dominant zooxanthellae in scleractinian corals in the Xisha Islands; (ii) Symbiodinium Clade D was found in the corals Montipora aequituberculata, Galaxea fascicularis, and Plerogyra sinuosa; and (iii) both Symbiodinium Clades C and D were found simultaneously in Montipora digitata, Psammocora contigua, and Galaxeafascicularis. A poor capacity for symbiosis polymorphism, as uncovered by RFLP, in the Xisha Islands indicates that the scleractinian corals have low adaptability to environmental changes. Further studies are needed to investigate zooxanthellae diversity using other molecular markers.展开更多
Coral reefs in the Xisha Islands (also known as the Paracel Islands in English), South China Sea, have experienced dramatic declines in coral cover. However, the current regional scale hard coral distribution of geo...Coral reefs in the Xisha Islands (also known as the Paracel Islands in English), South China Sea, have experienced dramatic declines in coral cover. However, the current regional scale hard coral distribution of geomorphic and ecological zones, essential for reefs management in the context of global warming and ocean acidification, is not well documented. We analyzed data from field surveys, Landsat-8 and GF-1 images to map the distribution of hard coral within geomorphic zones and reef fiat ecological zones. In situ surveys conducted in June 2014 on nine reefs provided a complete picture of reef status with regard to live coral diversity, evenness of coral cover and reef health (live versus dead cover) for the Xisha Islands. Mean coral cover was 12.5% in 2014 and damaged reefs seemed to show signs of recovery. Coral cover in sheltered habitats such as lagoon patch reefs and biotic dense zones of reef flats was higher, but there were large regional differences and low diversity. In contrast, the more exposed reef slopes had high coral diversity, along with high and more equal distributions of coral cover. Mean hard coral cover of other zones was 〈10%. The total Xisha reef system was estimated to cover 1 060 km2, and the emergent reefs covered -787 km2. Hard corals of emergent reefs were considered to cover 97 km2. The biotic dense zone of the reef flat was a very common zone on all simple atolls, especially the broader northern reef flats. The total cover of live and dead coral can reach above 70% in this zone, showing an equilibrium between live and dead coral as opposed to coral and algae. This information regarding the spatial distribution of hard coral can support and inform the management of Xisha reef ecosystems.展开更多
Halimeda is one of the major reef-building algas in the middle Miocene of Xisha, and one of the significant reef-building algas in the algal reef oil and gas field of the South China Sea. However, there have been few ...Halimeda is one of the major reef-building algas in the middle Miocene of Xisha, and one of the significant reef-building algas in the algal reef oil and gas field of the South China Sea. However, there have been few reports regarding the characteristics of mineral rocks, reservoir porosity and permeability layers, and sedimentation-diagenetic-evolution of fossil Halimeda systems. The present paper briefly introduces the relevant studies on chlorophyta Halimeda and the research status of oil and gas exploration. Through the 1 043 m core of the Xichen-1 well, we studied the characteristics of the mineral rocks and porosity and permeability of the middle Miocene Halimeda of the Yongle Atoll, identified and described the segments of fossil Halimeda, and pointed out that most of the segment slides are vertical sections in ovular, irregular or long strips. The overwhelming majority of these fossil Halimeda found and studied are vertical sections instead of cross sections. In this paper, knowledge regarding the cross sections of fossil Halimeda is reported and proven to be similar with the microscopic characteristics of modern living Halimeda;fossil Halimeda are buried in superposition;it is shown that there are different structures present, including typical bio-segment structure, and due to its feature of coexisting with red alga, tying structure, twining structure and encrusting structure are all present;and finally, it is suggested to classify the fossil Halimeda into segment algal reef dolomites. In addition, all of the studied intervals are moderately dolomitized. Secondary microcrystalline-dolosparite dominates the original aragonite raphide zones, and aphanitic-micrite dolomite plays the leading role in the cortexes and medullas;in the aragonite raphide zones between medulla and cysts, secondary dissolved pores and intercrystalline pores are formed inside the segments, and algal frame holes are formed between segments;therefore, a pore space network system (dissolved pores+intragranular dissolved pores—intercrystalline pores+algal frame holes) is established. Segment Halimeda dolomite has a porosity of 16.2%–46.1%, a permeability of 0.203×10^–3–2 641×10^–3μm^2, and a throat radius of 23.42–90.43μm, therefore it is shown to be a good oil and gas reservoir. For the reasons mentioned above, we suggest building the neogene organic reef-modern reef sedimentation-diagenetic-evolution models for the Xisha Islands.展开更多
Some benthic Prorocentrum can produce okadaic acid(OA)and dinophysistoxins(DTXs)that cause diarrheic shellfish poisoning(DSP)in humans.The diversity and toxin profi les(OA and DTXs)of benthic Prorocentrum were investi...Some benthic Prorocentrum can produce okadaic acid(OA)and dinophysistoxins(DTXs)that cause diarrheic shellfish poisoning(DSP)in humans.The diversity and toxin profi les(OA and DTXs)of benthic Prorocentrum were investigated in the Xisha Islands,South China Sea.The benthic Prorocentrum was identified by both morphological features and molecular phylogenies.Morphologies were examined by light,fluorescence,and scanning electron microscopy,and phylogenetic analyses were based on partial large subunit(LSU)rDNA and ITS1-5.8S-ITS2(ITS)region.Seven Prorocentrum species including P.borbonicum,P.caipirignum,P.concavum,P.elegans,P.cf.emarginatum,P.lima complex,and P.rhathymum were identified in Xisha Islands.Among them,P.borbonicum and P.elegans were recorded in Chinese waters for the first time.OA and DTXs contents of seven benthic Prorocentrum species were evaluated based on liquid chromatography-tandem mass spectrometry(LC-MS/MS).All Xisha Islands strains of P.lima complex produced OA at contents ranging from 1663 to 3816 fg/cell.P.caipirignum also generated OA at 407 fg/cell,but other five species had no detectable toxins.Besides,interestingly,two strains of P.lima complex produced DTX-1 only(74 and 183 fg/cell)and another two strains generated an isomer of OA and DTX-2.Our findings provided insight into the biodiversity of benthic Prorocentrum in the Xisha Islands and pointed out the potential risk of DSP in this area.展开更多
The late Quaternary shallow-water carbonates have been altered by a variety of diagenetic processes,and further influenced by high-amplitude global and regional sea level changes.This study utilizes a new borehole dri...The late Quaternary shallow-water carbonates have been altered by a variety of diagenetic processes,and further influenced by high-amplitude global and regional sea level changes.This study utilizes a new borehole drilled on the Yongxing Island,Xisha Islands to investigate meteoric diagenetic alteration in the late Quaternary shallowwater carbonates.Petrographic,mineralogical,stable isotopic and elemental data provide new insights into the meteoric diagenetic processes of the reef limestone.The results show the variation in the distribution of aragonite,high-Mg calcite(HMC)and low-Mg calcite(LMC)divides the shallow-water carbonates in Core SSZK1 into three intervals,which are UnitⅠ(31.20-55.92 m,LMC),UnitⅡ(18.39-31.20 m,aragonite and LMC)and UnitⅢ(upper 18.39 m of core,aragonite,LMC and HMC).Various degrees of meteoric diagenesis exist in the identified three units.The lowermost UnitⅠhas suffered almost complete freshwater diagenesis,whereas the overlying UnitsⅡandⅢhave undergone incompletely meteoric diagenesis.The amount of time that limestone has been in the freshwater diagenetic environment has the largest impact on the degree of meteoric diagenesis.Approximately four intact facies/water depth cycles are recognized.The cumulative depletion of elements such as strontium(Sr),sodium(Na)and sulphur(S)caused by duplicated meteoric diagenesis in the older reef sequences are distinguished from the younger reef sequences.This study provides a new record of meteoric diagenesis,which is well reflected by whole-rock mineralogy and geochemistry.展开更多
Mapping regional spatial patterns of coral reef geomorphology provides the primary information to understand the constructive processes in the reef ecosystem. However, this work is challenged by the pixel-based image ...Mapping regional spatial patterns of coral reef geomorphology provides the primary information to understand the constructive processes in the reef ecosystem. However, this work is challenged by the pixel-based image classification method for its comparatively low accuracy. In this paper, an object-based image analysis(OBIA)method was presented to map intra-reef geomorphology of coral reefs in the Xisha Islands, China using Landsat 8satellite imagery. Following the work of the Millennium Coral Reef Mapping Project, a regional reef class hierarchy with ten geomorphic classes was first defined. Then, incorporating the hierarchical concept and integrating the spectral and additional spatial information such as context, shape and contextual relationships, a large-scale geomorphic map was produced by OBIA with accuracies generally more than 80%. Although the robustness of OBIA has been validated in the applications of coral reef mapping from individual reefs to reef system in this paper, further work is still required to improve its transferability.展开更多
Xisha Islands is situated on the South China Sea, at 15° 46'-17° 08'N. and 111° 11'-112 ° 54' E., with an altitude of 2.6-15.9m. The major types of vegetation are the evergreen cor...Xisha Islands is situated on the South China Sea, at 15° 46'-17° 08'N. and 111° 11'-112 ° 54' E., with an altitude of 2.6-15.9m. The major types of vegetation are the evergreen coral island forest, and beach vegetation. The major types of vegetation are the evergreen coral island forest, scrub forest and beach vegetation. The dominant species of the forest communities are Pisonia grandis, Guettarda speciosa, Scaevola sericea and Messer schmidia argentea.There are 212 species of wild vascularplants belonging to 52 families and 147 genera in this area, of which there are 4 families, 4 genera and 5 species of pteridophyte and 48 families, 143 genera and 207 species of Angiosperms. The main families of the flora are Poaceae, Papilionaceae, Cyperaceae, Euphorbiaceae, Malvaceae, Rubiaceae, Nyctaginaceae and Boraginaceae etc. According to the geographical distribution, Spermatophytic genera in Xisha Islands may be classified into 9 types, of which pantropic genera accounts for 70% of total genera. At specific level, elements of Tropical Asia to Tropical Australia are dominant part in the forest communities. In this area there is no species endemic to itself. Many primitive taxa such as Gymnosperms, Anonaceae and many others are not found in the flora. Comparing the composition of the flora with those of 6 neighboring regions, the flora of Xisha Islands is quite similar to those of Hainan Island. The similarity indices of genera and species are 98.46% and 94.09% respectively. Indigofera chunianais endemic to the two regions.展开更多
A list of coral reef fish species of Huaguang Reef was compiled in 2023 using hand fishing,diving fishing,underwater video,and eDNA detection,combined with historical data from 1979 and archival records from the South...A list of coral reef fish species of Huaguang Reef was compiled in 2023 using hand fishing,diving fishing,underwater video,and eDNA detection,combined with historical data from 1979 and archival records from the South China Sea Fisheries Research Institute of the Chinese Academy of Fisheries Sciences for the years of 1998,1999,2003,and 2005.Successional characteristics of coral reef fishes through time were also explored.The findings revealed:(1)A total of 299 coral reef fish species were identified in Huaguang Reef,categorized into 2 classes,16 orders,and 56 families,with Perciformes exhibiting the highest species count(234),constituting 78.26%of all species.(2)In comparison to the period of 1979–2005,there was a reduction in the number of species at the order and family levels in 2023 at Huaguang Reef.Both the average taxonomic distinctness(Δt)and the variation in taxonomic distinctness(Λt)exhibited a declining trend,indicating disturbances in the fish ecosystem.(3)The proportion of herbivorous fish at Huaguang Reef remained relatively stable in 2023 compared to the 1979–2005 period.Notably,the similarity coefficient of herbivorous fish was the highest among different feeding types,signifying a degraded state of the Huaguang Reef habitat.(4)In contrast to the 1979–2005 period,a significant decline was observed in large-sized and carnivorous fish species at Huaguang Reef in 2023.The low similarity coefficients for both categories,with undiscovered fish species accounting for 58.49%and 45.76%of their respective taxa in the total list,respectively,suggested a notable impact of overfishing on coral reef fishes.The succession patterns revealed in this study provide a theoretical foundation for advancing the sustainable development of coral reef fish resources in the Xisha Islands and offer valuable insights for the protection and management of coral reef fishes.展开更多
Modern atolls have been studied systematically and thoroughly in the South China Sea.However,the knowledge of a paleo-atoll and related sedimentary system is very limited.Here we used the newly acquired high resolutio...Modern atolls have been studied systematically and thoroughly in the South China Sea.However,the knowledge of a paleo-atoll and related sedimentary system is very limited.Here we used the newly acquired high resolution 2D seismic data,and discovered three late Miocene atoll systems in the offshore Xisha Islands for the first time.We named them atoll system A,B,C,respectively.These three atoll systems,all developed on the horsts dominated by normal fault,consist mainly of atoll reefs,patch reefs,fore-reef slope deposits,and lagoons.On the basis of the interpreted sequence stratigraphic framework and the identification of fore-reef slope deposits,we suggested only the atoll system A continued to grow until Quaternary,and both of atoll system B and C had been drowned in Pliocene.In late Miocene,the atoll systems in the study area were most developed,either in magnitude or in maturity,which indicated late Miocene was the most flourishing period of reef builders,and this was in accordance with the drilling result of ODP Leg 184 in the South China Sea.Pliocene was an important reef drowning period in the study area,and both atoll systems B and C were drowned and hemipelagic deposits prevailed gradually.Quaternary was another reef drowning period in the study area,two large atoll reefs grown on the atoll system A were finally drowned,and hemipelagic deposits begun to drape and fill the palaeo-atoll systems.The growth and drowning of atolls are controlled mainly by tectonic subsidence in long term,but global eustatic can impact it in short term also.展开更多
Microbes and microbial carbonates in reef-flat and coral community dynamics and submarine geomorphologic features in reef crest and fore reef of Yongxing Island,the Xisha Islands,South China Sea,were studied by means ...Microbes and microbial carbonates in reef-flat and coral community dynamics and submarine geomorphologic features in reef crest and fore reef of Yongxing Island,the Xisha Islands,South China Sea,were studied by means of scuba diving,underwater investigation,and line intercept transect survey.Studies indicate a very high coral mortality with few living corals in the reef flat of Yongxing Island.Moreover,macro algae,sea grass and cyanobacteria are common in reef flat.Microbes and microbially induced carbonates occur in reef flat.Living corals grow mainly in the reef crest and fore reef,but are also declined dramatically.From coast to off shore,the southeast reef flat of Yongxing Island can be divided into beach,inner reef flat,outer reef flat,reef flat front(reef crest and fore reef),and fore-reef slope settings.Sedimentary facies include coast,reef flat,reef crest and fore reef,and fore-reef slope.Reefal carbonate sediments are composed of coral skeletons and framework,coral fragments,bioclasts,and lime mud.With the deterioration of environment and water quality,the coral communities tend to be distributed in the reef crest and fore reef with clean sea water,well circulation and moderate water energy.Reef flat is occupied mainly by the macro algae and Heliopora coerulea communities.The coverage statistics on the reef crest demonstrate that the coverage of Acropora cytherea is more than 28% and represents a dominant species with wave-resistant ecological type.Sedimentary characteristics and geomorphologic features are different between the southeast and northwest reef-flat fronts(reef crest and fore reef) of Yongxing Island.The former shows discontinuously tidal channels in outer reef flat and different dimensional and deep reef ponds in reef crest and fore reef,and the latter presents a typical spur-and-groove system.Microbes(cyanobacteria Lyngbya sp.) occur generally in the inner reef flat and reef ponds of reef crest with restricted water circulation.Widely algae growth indicates a eutrophic environment,and the common microbes on the coral surface in the reef flat and reef ponds also demonstrate eutrophication in seawater and deteriorated water quality.展开更多
The Yongxing Island is the biggest island of Xisha Islands in the middle part of the South China Sea. It occupies 1.8 square kilometers of land area and has permanent residence on it. There are only a few papers on th...The Yongxing Island is the biggest island of Xisha Islands in the middle part of the South China Sea. It occupies 1.8 square kilometers of land area and has permanent residence on it. There are only a few papers on the coral community of the Xisha Islands, reporting the species composition, structure and zonations of the hermatypic coral community in 1970s. The present study describes the hermatypic coral community based on the quadrat survey after almost 30 years in Yongxing Island in August 2002. It was the first time to present the percent cover data of live corals of Yongxing Island via a systematic scheme of quantitative quadrat sampling. The average total percent cover of the live coral is 68.4%. We found the total percent cover (TPC) could be an idea proxy of the overall disturbance regime impinging on the coral community. TPC can be used as an integrated measure of disturbance to coral reef. Using this surrogate, the best fit relation between TPC of the live corals and species richness, species diversity, or the species evenness is the unimodal second-order polymorphic parabola equation. This result is expected by the intermediate disturbance hypothesis (IDH). From the fitted parabola equations, we calculated the best TPCs corresponding to the maximal species richness, the highest species diversity, or the most evenness respectively. They are surprisingly stabilized between 55% and 58%. Coralcover is the basic parameter widely available for most observation, research or monitoring programs. The good qualitative characteristics of percent cover provide powerful tool for the experimental, theoretical and modeling studies of coral reef in response to the disturbance.展开更多
The data of lithology, mineralogy, lithochemistry, palaeoorganism-palaeoecology of 455.25 m cores from Xichen-1 well have been obtained, the characteristics, types, models of fossil taphonomy and reef-making actions a...The data of lithology, mineralogy, lithochemistry, palaeoorganism-palaeoecology of 455.25 m cores from Xichen-1 well have been obtained, the characteristics, types, models of fossil taphonomy and reef-making actions about different communities of 9 genera and 43 species algae have been discussed, and the evolution process of algae’ s ecologic system展开更多
基金The National Natural Science Foundation of China under contract Nos 42030502, 42090041 and 42166003the Guangxi Scientific Projects under contract Nos AD17129063 and AA17204074+1 种基金the Guangxi Youth Science Fund Project under contract 2019GXNSFBA185016the Ph.D. Research Start-up Foundation of Guangxi University under contract No. XBZ170339。
文摘As one of the micro-blocks dispersed in the South China Sea(SCS), the basement of the Xisha Islands has rarely been drilled because of the thick overlying Cenozoic sediments, which has led to a confused understanding of the pre-Cenozoic basement of the Xisha Islands. Well CK-1, a kilometer-scale major scientific drill in the Xisha Islands in the northwestern SCS, penetrated thick reefal limestone(0–888.4 m) and the underlying basement rocks(888.4–901.4 m). In this study, we present the zircon U-Pb ages of basement basaltic pyroclastic rocks from Well CK-1 in the Xisha Islands of the northwestern SCS to investigate the basement nature of the Xisha microblock. The basement of Well CK-1 consists of basaltic pyroclastic rocks on the seamount. The zircon grains yielded apparent ages ranging from ca. 2 138.9 Ma to ca. 36 Ma. The old group of zircon grains from Well CK-1 was considered to be inherited zircons. Two Cenozoic zircons gave a weighted mean 206Pb/238U age of(36.3 ± 1.1) Ma,Mean Squared Weighted Deviations(MSWD) = 1.2, which may represent the maximum age of the volcano eruption. The Yanshanian inherited zircons(116.9–105.7 Ma and 146.1–130.2 Ma) from Well CK-1 are consistent with the zircons from Well XK-1, indicating that the basement of Chenhang Island may be similar to that of Well XK-1. We propose that the Xisha micro-block may have developed on a uniform Late Jurassic metamorphic crystalline basement, intruded by Cretaceous granitic magma.
基金Supported by the National Basic Research Program of China(973 Program)(No.2012CB956004)the Science and Technology Basic Resources Investigation Program of China(No.2017FY201407)+1 种基金the National Oil and Gas Major Projects of China(No.2011ZX05025-002)the National Natural Science Foundation of China(NSFC)(No.41106064)
文摘Carbonate rocks are important reservoirs for global petroleum exploration.The largest oilfield in the South China Sea,Liuhua 11-1,is distributed in the massive carbonate reef area of the Zhujiang(Pearl)River Mouth Basin.Previous studies showed that one 802.17-m-long core from well Xichen-1 in the South China Sea mainly consisted of white and light gray-white organic reefs.Recently,a Miocene whole core(161.9 m long)of well Xiyong-2,near well Xichen-1,was found to contain six layers of yellowish brown,light yellowish gray,iron black,or light yellowish gray-white organic reefs.Scanning electron microscope images of these layers reveal a typical ferroan dolomite rich in Fe(up to 29%),with the high concentrations of Mn,Cu,W,Zn,Cr,Ni,and Co.Systematic X-ray powder diffraction analysis yields a 1.9–6.1 match in phase ratio with ankerite,5.4–26.9 with dolomite,and zero with calcite,which indicate that the samples can be classified as ferroan dolomite.The iron and heavy metals are inferred to be originated from multiple volcanic eruptions of Gaojianshi Island in the Dongdao Atoll during the middle-late Miocene.These elements were dissolved in seawater,likely as a sol,and carried to Yongxing Island in the Xuande Atoll by sea currents and tides enhanced by prevailing winds,and deposited as a part of the sedimentation process in the study area.The ferroan dolomite has Sr content of (125–285)×10^(-6),which is lower than the accepted Sr boundary value of dolomite.This finding suggests that dolomitization occurred during large-scale global glacial regression in the late Miocene.The isolated Xisha carbonate platform,exposed to air,underwent freshwater leaching and dolomitization induced by mixed water,and caused the extensive Fe-Mg exchange along the organic reef profile to form ankerite and ferroan dolomite.These results may help to understand paleoceanographic environmental changes in the South China Sea during the Miocene.
基金The National Key Science and Technology Special Projects for Giant Oil and Gas Field and Coal Gas of China under contract Nos 2008ZX05023 and 2011ZX05025-002the National Natural Science Foundation of China under contract Nos 49206061 and 41106064the National Basic Research Program(973 Program) of China under contract No.2012CB956004
文摘A recent island survey reveals that the Xuande Atoll and the Yongle Atoll in the Xisha Islands can be classified into one of two systems:the depleted atoll system and growth atoll system;the survey also indicates that the decreased area of several shoals is an unbearable burden for the Xisha Islands, of which the largest island area is 2.13 km2 and the minimum elevation is 1.4 m. According to a survey on the ecological characteristics of Halimeda in the Laolongtou breaker zone of Shidao Island in the Xisha Islands, the green and white living Halimeda are collected, the isotopic ages of 14C contained in the Halimeda are shown to be 27 years and 55 years, respectively, and carbonate mainly occurs in five types, i.e., luster, segment, sand, sand grain, and marl in the formation. The Halimeda segments mainly provide the carbonate sediments of long-term biogenic deposits in the reef environment and the annual productivity per area is 60–100 g/m2;the characteristics of the microstructure of the Halimeda are analyzed, the aragonite raphide carbonate is deposited and enriched in the cortexes, medullas and cysts, and the Halimeda generally contain major elements such as C, O, Ca, Cl, Mg, K, Na, S and Al, and are rich in trace elements such as tellurium (Te), rhodium (Rh) and strontium. It is believed that the Halimeda grow slowly, including the biotic community of reef corals in the reef areas, thus they possess an environmental remediation capacity, but it takes much time to remedy the environment, and it is necessary to make the law to protect the diversity and vulnerability of the Xisha marine ecology, the ecology of the reef community and the island environment in a scientific way. As indicated in the survey, under the background of global warming and sea-level rise, the discovery of large amounts of Halimeda in the Laolongtou sea area is significant for the natural increase of the depleted atoll system of the Xuande Atoll, while the Halimeda segments represent the primary form of the fossil Halimeda, of which the species can be identified and preserved in great numbers under geological conditions. The Miocene was discovered in large amounts in the Xichen-1 well, therefore the study on the characteristics and mechanism of Halimeda carbonate sediments plays a pivotal role in the formation and construction of organic reefs in the South China Sea as well as oil and gas exploration.
基金Supported by the National Basic Research Program of China (973 Program) (No. 2009CB219406)the Knowledge Innovation Program of CAS (KZCX2-YW-229)National Science & Technology Major Project (No. 2008zx05025-003-03)
文摘The aeolianite deposits on Shidao Island of the Xisha Islands,the South China Sea,contain five stages of aeolian biocalcarenites and four paleosols.The aeolian biocalcarenites consist of two sedimentary facies:dune and interdune deposits.In the dunes,large-scale festoon cross-bedding,humped cross-bedding and high-angle foreset bedding are well developed,and in the interdunes,large-scale flat-bedding and low-angle wedge shaped cross-bedding are well developed.The sedimentary structures and lamella features indicate that the aeolian deposits are driven mainly by the northeast monsoon.The aeolian biocalcarenite and paleosols may reflect the arid and humid climates of the East Asian monsoon,respectively.By comparison with the stalagmite oxygen isotope climosequence of Hulu Cave,Nanjing,we inferred that the aeolianite formed in the last glacial stage,and the paleosols were formed during relatively long-term warm events.
基金supported by grantsfrom the National Natural Science Fundation of China(40776085 and 40576052)State Oceanic Administration of China(908-ST-01-08-Coral Reefs Survey)Bureau of Science and Technology for Resources and Environment(YTZJJ0502)
文摘Symbiotic algae (Symbiodinium sp.) in scleractinian corals are important in understanding how coral reefs will respond to global climate change. The present paper reports on the diversity of Symbiodinium sp. in 48 scleractinian coral species from 25 genera and 10 families sampled from the Xisha Islands in the South China Sea, which were identified with the use of restriction fragment length polymorphism (RFLP) of the nuclear ribosomal DNA large subunit gene (rDNA). The results showed that: (i) Symbiodinium Clade C was the dominant zooxanthellae in scleractinian corals in the Xisha Islands; (ii) Symbiodinium Clade D was found in the corals Montipora aequituberculata, Galaxea fascicularis, and Plerogyra sinuosa; and (iii) both Symbiodinium Clades C and D were found simultaneously in Montipora digitata, Psammocora contigua, and Galaxeafascicularis. A poor capacity for symbiosis polymorphism, as uncovered by RFLP, in the Xisha Islands indicates that the scleractinian corals have low adaptability to environmental changes. Further studies are needed to investigate zooxanthellae diversity using other molecular markers.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2012AA12A406)the National Natural Science Foundation of China(No.41271409)the National Science and Technology Major Project(No.00-Y30B15-9001-14/16-5)
文摘Coral reefs in the Xisha Islands (also known as the Paracel Islands in English), South China Sea, have experienced dramatic declines in coral cover. However, the current regional scale hard coral distribution of geomorphic and ecological zones, essential for reefs management in the context of global warming and ocean acidification, is not well documented. We analyzed data from field surveys, Landsat-8 and GF-1 images to map the distribution of hard coral within geomorphic zones and reef fiat ecological zones. In situ surveys conducted in June 2014 on nine reefs provided a complete picture of reef status with regard to live coral diversity, evenness of coral cover and reef health (live versus dead cover) for the Xisha Islands. Mean coral cover was 12.5% in 2014 and damaged reefs seemed to show signs of recovery. Coral cover in sheltered habitats such as lagoon patch reefs and biotic dense zones of reef flats was higher, but there were large regional differences and low diversity. In contrast, the more exposed reef slopes had high coral diversity, along with high and more equal distributions of coral cover. Mean hard coral cover of other zones was 〈10%. The total Xisha reef system was estimated to cover 1 060 km2, and the emergent reefs covered -787 km2. Hard corals of emergent reefs were considered to cover 97 km2. The biotic dense zone of the reef flat was a very common zone on all simple atolls, especially the broader northern reef flats. The total cover of live and dead coral can reach above 70% in this zone, showing an equilibrium between live and dead coral as opposed to coral and algae. This information regarding the spatial distribution of hard coral can support and inform the management of Xisha reef ecosystems.
基金The National Science and Technology Major Project for Large Oil-Gas Fields and Coal-formed Gas Development under contract Nos 2008ZX05023 and 2011ZX05025-002the National Natural Science Foundation of China under contract Nos 49206061 and 41106064the National Basic Research Program(973 Program) of China under contract Nos 2012CB956004 and 2009CB219406
文摘Halimeda is one of the major reef-building algas in the middle Miocene of Xisha, and one of the significant reef-building algas in the algal reef oil and gas field of the South China Sea. However, there have been few reports regarding the characteristics of mineral rocks, reservoir porosity and permeability layers, and sedimentation-diagenetic-evolution of fossil Halimeda systems. The present paper briefly introduces the relevant studies on chlorophyta Halimeda and the research status of oil and gas exploration. Through the 1 043 m core of the Xichen-1 well, we studied the characteristics of the mineral rocks and porosity and permeability of the middle Miocene Halimeda of the Yongle Atoll, identified and described the segments of fossil Halimeda, and pointed out that most of the segment slides are vertical sections in ovular, irregular or long strips. The overwhelming majority of these fossil Halimeda found and studied are vertical sections instead of cross sections. In this paper, knowledge regarding the cross sections of fossil Halimeda is reported and proven to be similar with the microscopic characteristics of modern living Halimeda;fossil Halimeda are buried in superposition;it is shown that there are different structures present, including typical bio-segment structure, and due to its feature of coexisting with red alga, tying structure, twining structure and encrusting structure are all present;and finally, it is suggested to classify the fossil Halimeda into segment algal reef dolomites. In addition, all of the studied intervals are moderately dolomitized. Secondary microcrystalline-dolosparite dominates the original aragonite raphide zones, and aphanitic-micrite dolomite plays the leading role in the cortexes and medullas;in the aragonite raphide zones between medulla and cysts, secondary dissolved pores and intercrystalline pores are formed inside the segments, and algal frame holes are formed between segments;therefore, a pore space network system (dissolved pores+intragranular dissolved pores—intercrystalline pores+algal frame holes) is established. Segment Halimeda dolomite has a porosity of 16.2%–46.1%, a permeability of 0.203×10^–3–2 641×10^–3μm^2, and a throat radius of 23.42–90.43μm, therefore it is shown to be a good oil and gas reservoir. For the reasons mentioned above, we suggest building the neogene organic reef-modern reef sedimentation-diagenetic-evolution models for the Xisha Islands.
基金Supported by the National Natural Science Foundation of China(Nos.41876173,41606176,41576162,41606175)the Special Foundation for National Science and Technology Basic Research Program of China(Nos.2018FY100200,2018FY100100)。
文摘Some benthic Prorocentrum can produce okadaic acid(OA)and dinophysistoxins(DTXs)that cause diarrheic shellfish poisoning(DSP)in humans.The diversity and toxin profi les(OA and DTXs)of benthic Prorocentrum were investigated in the Xisha Islands,South China Sea.The benthic Prorocentrum was identified by both morphological features and molecular phylogenies.Morphologies were examined by light,fluorescence,and scanning electron microscopy,and phylogenetic analyses were based on partial large subunit(LSU)rDNA and ITS1-5.8S-ITS2(ITS)region.Seven Prorocentrum species including P.borbonicum,P.caipirignum,P.concavum,P.elegans,P.cf.emarginatum,P.lima complex,and P.rhathymum were identified in Xisha Islands.Among them,P.borbonicum and P.elegans were recorded in Chinese waters for the first time.OA and DTXs contents of seven benthic Prorocentrum species were evaluated based on liquid chromatography-tandem mass spectrometry(LC-MS/MS).All Xisha Islands strains of P.lima complex produced OA at contents ranging from 1663 to 3816 fg/cell.P.caipirignum also generated OA at 407 fg/cell,but other five species had no detectable toxins.Besides,interestingly,two strains of P.lima complex produced DTX-1 only(74 and 183 fg/cell)and another two strains generated an isomer of OA and DTX-2.Our findings provided insight into the biodiversity of benthic Prorocentrum in the Xisha Islands and pointed out the potential risk of DSP in this area.
基金The National Natural Science Foundation of China-Guangdong Joint Foundation under contract No.U1701245the Hainan Provincial Natural Science Foundation of China under contract No.418QN306+2 种基金the Land and Georesource Bureau of Hainan Province under contract No.SQ2016KJHZ0027the Pioneer Hundred Talents Program under contract No.Y910091001the Guangzhou Marine Geological Survey Project under contract No.GZH201400210.
文摘The late Quaternary shallow-water carbonates have been altered by a variety of diagenetic processes,and further influenced by high-amplitude global and regional sea level changes.This study utilizes a new borehole drilled on the Yongxing Island,Xisha Islands to investigate meteoric diagenetic alteration in the late Quaternary shallowwater carbonates.Petrographic,mineralogical,stable isotopic and elemental data provide new insights into the meteoric diagenetic processes of the reef limestone.The results show the variation in the distribution of aragonite,high-Mg calcite(HMC)and low-Mg calcite(LMC)divides the shallow-water carbonates in Core SSZK1 into three intervals,which are UnitⅠ(31.20-55.92 m,LMC),UnitⅡ(18.39-31.20 m,aragonite and LMC)and UnitⅢ(upper 18.39 m of core,aragonite,LMC and HMC).Various degrees of meteoric diagenesis exist in the identified three units.The lowermost UnitⅠhas suffered almost complete freshwater diagenesis,whereas the overlying UnitsⅡandⅢhave undergone incompletely meteoric diagenesis.The amount of time that limestone has been in the freshwater diagenetic environment has the largest impact on the degree of meteoric diagenesis.Approximately four intact facies/water depth cycles are recognized.The cumulative depletion of elements such as strontium(Sr),sodium(Na)and sulphur(S)caused by duplicated meteoric diagenesis in the older reef sequences are distinguished from the younger reef sequences.This study provides a new record of meteoric diagenesis,which is well reflected by whole-rock mineralogy and geochemistry.
基金The National Natural Science Foundation of China under contract No.41201328the Science Foundation for Young Scholars of China’s State Oceanic Administration under contract No.2013415
文摘Mapping regional spatial patterns of coral reef geomorphology provides the primary information to understand the constructive processes in the reef ecosystem. However, this work is challenged by the pixel-based image classification method for its comparatively low accuracy. In this paper, an object-based image analysis(OBIA)method was presented to map intra-reef geomorphology of coral reefs in the Xisha Islands, China using Landsat 8satellite imagery. Following the work of the Millennium Coral Reef Mapping Project, a regional reef class hierarchy with ten geomorphic classes was first defined. Then, incorporating the hierarchical concept and integrating the spectral and additional spatial information such as context, shape and contextual relationships, a large-scale geomorphic map was produced by OBIA with accuracies generally more than 80%. Although the robustness of OBIA has been validated in the applications of coral reef mapping from individual reefs to reef system in this paper, further work is still required to improve its transferability.
文摘Xisha Islands is situated on the South China Sea, at 15° 46'-17° 08'N. and 111° 11'-112 ° 54' E., with an altitude of 2.6-15.9m. The major types of vegetation are the evergreen coral island forest, and beach vegetation. The major types of vegetation are the evergreen coral island forest, scrub forest and beach vegetation. The dominant species of the forest communities are Pisonia grandis, Guettarda speciosa, Scaevola sericea and Messer schmidia argentea.There are 212 species of wild vascularplants belonging to 52 families and 147 genera in this area, of which there are 4 families, 4 genera and 5 species of pteridophyte and 48 families, 143 genera and 207 species of Angiosperms. The main families of the flora are Poaceae, Papilionaceae, Cyperaceae, Euphorbiaceae, Malvaceae, Rubiaceae, Nyctaginaceae and Boraginaceae etc. According to the geographical distribution, Spermatophytic genera in Xisha Islands may be classified into 9 types, of which pantropic genera accounts for 70% of total genera. At specific level, elements of Tropical Asia to Tropical Australia are dominant part in the forest communities. In this area there is no species endemic to itself. Many primitive taxa such as Gymnosperms, Anonaceae and many others are not found in the flora. Comparing the composition of the flora with those of 6 neighboring regions, the flora of Xisha Islands is quite similar to those of Hainan Island. The similarity indices of genera and species are 98.46% and 94.09% respectively. Indigofera chunianais endemic to the two regions.
基金supported by Natural Science Foundation of Hainan Province(323MS124,322CXTD530)Financial Fund of the Ministry of Agriculture and Rural Affairs,P.R.of China(NHZX2024)+3 种基金The Nan-Fan Aquaculture Joint Open Fund Project,Hainan Tropical Ocean University(2023SCNFKF06)Fundamental and Applied Fundamental Research Major Program of Guangdong Province(2019B030302004-05)Central Public-interest Scientific Institution Basal Research Fund,CAFS(2023TD16)Central Public-interest Scientific Institution Basal Research Fund,South China Sea Fisheries Research Institute,CAFS(2021SD04 and 2019TS28).
文摘A list of coral reef fish species of Huaguang Reef was compiled in 2023 using hand fishing,diving fishing,underwater video,and eDNA detection,combined with historical data from 1979 and archival records from the South China Sea Fisheries Research Institute of the Chinese Academy of Fisheries Sciences for the years of 1998,1999,2003,and 2005.Successional characteristics of coral reef fishes through time were also explored.The findings revealed:(1)A total of 299 coral reef fish species were identified in Huaguang Reef,categorized into 2 classes,16 orders,and 56 families,with Perciformes exhibiting the highest species count(234),constituting 78.26%of all species.(2)In comparison to the period of 1979–2005,there was a reduction in the number of species at the order and family levels in 2023 at Huaguang Reef.Both the average taxonomic distinctness(Δt)and the variation in taxonomic distinctness(Λt)exhibited a declining trend,indicating disturbances in the fish ecosystem.(3)The proportion of herbivorous fish at Huaguang Reef remained relatively stable in 2023 compared to the 1979–2005 period.Notably,the similarity coefficient of herbivorous fish was the highest among different feeding types,signifying a degraded state of the Huaguang Reef habitat.(4)In contrast to the 1979–2005 period,a significant decline was observed in large-sized and carnivorous fish species at Huaguang Reef in 2023.The low similarity coefficients for both categories,with undiscovered fish species accounting for 58.49%and 45.76%of their respective taxa in the total list,respectively,suggested a notable impact of overfishing on coral reef fishes.The succession patterns revealed in this study provide a theoretical foundation for advancing the sustainable development of coral reef fish resources in the Xisha Islands and offer valuable insights for the protection and management of coral reef fishes.
基金supported by the National Natural Science Foundation of China(Grant Nos.91028003,41406068)Open Foundation of Key Laboratory of Marine Mineral Resources,Ministry of Land and Resources(Grant No.KLMMR-2013-A-22)
文摘Modern atolls have been studied systematically and thoroughly in the South China Sea.However,the knowledge of a paleo-atoll and related sedimentary system is very limited.Here we used the newly acquired high resolution 2D seismic data,and discovered three late Miocene atoll systems in the offshore Xisha Islands for the first time.We named them atoll system A,B,C,respectively.These three atoll systems,all developed on the horsts dominated by normal fault,consist mainly of atoll reefs,patch reefs,fore-reef slope deposits,and lagoons.On the basis of the interpreted sequence stratigraphic framework and the identification of fore-reef slope deposits,we suggested only the atoll system A continued to grow until Quaternary,and both of atoll system B and C had been drowned in Pliocene.In late Miocene,the atoll systems in the study area were most developed,either in magnitude or in maturity,which indicated late Miocene was the most flourishing period of reef builders,and this was in accordance with the drilling result of ODP Leg 184 in the South China Sea.Pliocene was an important reef drowning period in the study area,and both atoll systems B and C were drowned and hemipelagic deposits prevailed gradually.Quaternary was another reef drowning period in the study area,two large atoll reefs grown on the atoll system A were finally drowned,and hemipelagic deposits begun to drape and fill the palaeo-atoll systems.The growth and drowning of atolls are controlled mainly by tectonic subsidence in long term,but global eustatic can impact it in short term also.
基金supported by National Natural Science Foundation of China (Grant Nos.40976030,41006029),Projects of International Cooperation and Exchanges of National Natural Science Foundation of China (Grant No.41210104029)Knowledge Innovation Program of Chinese Academy of Sciences (Grant No.SQ201114)
文摘Microbes and microbial carbonates in reef-flat and coral community dynamics and submarine geomorphologic features in reef crest and fore reef of Yongxing Island,the Xisha Islands,South China Sea,were studied by means of scuba diving,underwater investigation,and line intercept transect survey.Studies indicate a very high coral mortality with few living corals in the reef flat of Yongxing Island.Moreover,macro algae,sea grass and cyanobacteria are common in reef flat.Microbes and microbially induced carbonates occur in reef flat.Living corals grow mainly in the reef crest and fore reef,but are also declined dramatically.From coast to off shore,the southeast reef flat of Yongxing Island can be divided into beach,inner reef flat,outer reef flat,reef flat front(reef crest and fore reef),and fore-reef slope settings.Sedimentary facies include coast,reef flat,reef crest and fore reef,and fore-reef slope.Reefal carbonate sediments are composed of coral skeletons and framework,coral fragments,bioclasts,and lime mud.With the deterioration of environment and water quality,the coral communities tend to be distributed in the reef crest and fore reef with clean sea water,well circulation and moderate water energy.Reef flat is occupied mainly by the macro algae and Heliopora coerulea communities.The coverage statistics on the reef crest demonstrate that the coverage of Acropora cytherea is more than 28% and represents a dominant species with wave-resistant ecological type.Sedimentary characteristics and geomorphologic features are different between the southeast and northwest reef-flat fronts(reef crest and fore reef) of Yongxing Island.The former shows discontinuously tidal channels in outer reef flat and different dimensional and deep reef ponds in reef crest and fore reef,and the latter presents a typical spur-and-groove system.Microbes(cyanobacteria Lyngbya sp.) occur generally in the inner reef flat and reef ponds of reef crest with restricted water circulation.Widely algae growth indicates a eutrophic environment,and the common microbes on the coral surface in the reef flat and reef ponds also demonstrate eutrophication in seawater and deteriorated water quality.
基金Acknowledgements We thank Prof Lin Yangtang of the Aquaculture Institute of South China Sea, Ms. Chen Wenqun of the 0cean Administration of Halnan Province, and our colleagues, Mr. Yue Weizhong and Li Yinghong for their helps in the field work. We are also grateful to Dr. Liu Sheng for providing helpful information. This study was funded by the National Natural Science Foundation of China (Grant Nos. 90211015 and 30200039) and the Innovative Project of Chinese Academy of Sciences (Grant No. KSCZ2-SW- 132).
文摘The Yongxing Island is the biggest island of Xisha Islands in the middle part of the South China Sea. It occupies 1.8 square kilometers of land area and has permanent residence on it. There are only a few papers on the coral community of the Xisha Islands, reporting the species composition, structure and zonations of the hermatypic coral community in 1970s. The present study describes the hermatypic coral community based on the quadrat survey after almost 30 years in Yongxing Island in August 2002. It was the first time to present the percent cover data of live corals of Yongxing Island via a systematic scheme of quantitative quadrat sampling. The average total percent cover of the live coral is 68.4%. We found the total percent cover (TPC) could be an idea proxy of the overall disturbance regime impinging on the coral community. TPC can be used as an integrated measure of disturbance to coral reef. Using this surrogate, the best fit relation between TPC of the live corals and species richness, species diversity, or the species evenness is the unimodal second-order polymorphic parabola equation. This result is expected by the intermediate disturbance hypothesis (IDH). From the fitted parabola equations, we calculated the best TPCs corresponding to the maximal species richness, the highest species diversity, or the most evenness respectively. They are surprisingly stabilized between 55% and 58%. Coralcover is the basic parameter widely available for most observation, research or monitoring programs. The good qualitative characteristics of percent cover provide powerful tool for the experimental, theoretical and modeling studies of coral reef in response to the disturbance.
文摘The data of lithology, mineralogy, lithochemistry, palaeoorganism-palaeoecology of 455.25 m cores from Xichen-1 well have been obtained, the characteristics, types, models of fossil taphonomy and reef-making actions about different communities of 9 genera and 43 species algae have been discussed, and the evolution process of algae’ s ecologic system