针对弱光线环境下道路交通标志检测精度不高、漏检、错检等情况,提出了一种改进YOLOX的融合检测算法。该算法引入轻量级Mobile Vi T Block模块,将CNN和Transformer结合,提高了网络对物体局部和全局特征的学习能力;通过添加自适应特征融...针对弱光线环境下道路交通标志检测精度不高、漏检、错检等情况,提出了一种改进YOLOX的融合检测算法。该算法引入轻量级Mobile Vi T Block模块,将CNN和Transformer结合,提高了网络对物体局部和全局特征的学习能力;通过添加自适应特征融合金字塔ASFF,对有效特征层进行加权融合,加快了网络训练收敛速度;并采用Focal Loss替换二元交叉熵损失函数,用以解决因样本少导致分类不准确的问题。实验结果表明,相较于YOLOX算法,改进YOLOX算法mAP值提升了2.89%,参数量减少了6.23 M,可视化实验进一步验证了所提算法可以提高检测精度,有效避免因弱光线导致的漏检、错检现象。展开更多
针对现有基于深度学习的钢轨表面缺陷检测方法在嵌入式检测系统上兼容性较差、计算资源占用高以及检测速度慢的问题,提出了一种基于改进YOLOX的轻量级钢轨表面缺陷检测算法。模型中主干特征层以MobileNetv3单元为基础,在保留其网络轻量...针对现有基于深度学习的钢轨表面缺陷检测方法在嵌入式检测系统上兼容性较差、计算资源占用高以及检测速度慢的问题,提出了一种基于改进YOLOX的轻量级钢轨表面缺陷检测算法。模型中主干特征层以MobileNetv3单元为基础,在保留其网络轻量化的同时进行局部优化,改进了浅层网络的激活函数,嵌入了SE(Squeeze and Excitation)注意力机制;在加强特征层优化了尾部的冗余卷积。通过与几种代表性算法进行对比试验,验证该算法的性能。结果表明:本文提出的改进算法在模型参数量仅为1.10×106的情况下,检出率和准确率分别达到了92.17%和90.92%,每秒传输帧数(Frame Per Second,FPS)为115.07,模型大小仅为原模型的1/5。该算法在保证较高检测精度的同时大大降低了模型参数量,并提升了检测速度,更适合部署于算力有限的嵌入式轨道检测系统,可为钢轨缺陷高效检测提供有效手段。展开更多
针对船舶目标检测存在的模型参数量多、规模大、实时性差和难以在实际工程中应用等问题,提出面向船舶目标检测的YOLOX轻量化方法。设计CA-Mobile Net V3轻量化主干网络,在Mobile Net V3中融合坐标注意力机制,生成一对方向感知特征图,提...针对船舶目标检测存在的模型参数量多、规模大、实时性差和难以在实际工程中应用等问题,提出面向船舶目标检测的YOLOX轻量化方法。设计CA-Mobile Net V3轻量化主干网络,在Mobile Net V3中融合坐标注意力机制,生成一对方向感知特征图,提升空间信息编码能力;改进细化融合特征金字塔网络,构建对称的大尺度深度可分离卷积,提高感受野的范围;通过引入残差分支,以串联的方式融合细化不同尺度的特征信息,提高对小尺度船舶目标的检测能力。基于Seaships数据集的试验结果表明,提出的模型与YOLOv5和YOLOX等相比,具有规模小、实时性好和检测精度高等优势。展开更多
文摘针对弱光线环境下道路交通标志检测精度不高、漏检、错检等情况,提出了一种改进YOLOX的融合检测算法。该算法引入轻量级Mobile Vi T Block模块,将CNN和Transformer结合,提高了网络对物体局部和全局特征的学习能力;通过添加自适应特征融合金字塔ASFF,对有效特征层进行加权融合,加快了网络训练收敛速度;并采用Focal Loss替换二元交叉熵损失函数,用以解决因样本少导致分类不准确的问题。实验结果表明,相较于YOLOX算法,改进YOLOX算法mAP值提升了2.89%,参数量减少了6.23 M,可视化实验进一步验证了所提算法可以提高检测精度,有效避免因弱光线导致的漏检、错检现象。
文摘针对现有基于深度学习的钢轨表面缺陷检测方法在嵌入式检测系统上兼容性较差、计算资源占用高以及检测速度慢的问题,提出了一种基于改进YOLOX的轻量级钢轨表面缺陷检测算法。模型中主干特征层以MobileNetv3单元为基础,在保留其网络轻量化的同时进行局部优化,改进了浅层网络的激活函数,嵌入了SE(Squeeze and Excitation)注意力机制;在加强特征层优化了尾部的冗余卷积。通过与几种代表性算法进行对比试验,验证该算法的性能。结果表明:本文提出的改进算法在模型参数量仅为1.10×106的情况下,检出率和准确率分别达到了92.17%和90.92%,每秒传输帧数(Frame Per Second,FPS)为115.07,模型大小仅为原模型的1/5。该算法在保证较高检测精度的同时大大降低了模型参数量,并提升了检测速度,更适合部署于算力有限的嵌入式轨道检测系统,可为钢轨缺陷高效检测提供有效手段。
文摘针对船舶目标检测存在的模型参数量多、规模大、实时性差和难以在实际工程中应用等问题,提出面向船舶目标检测的YOLOX轻量化方法。设计CA-Mobile Net V3轻量化主干网络,在Mobile Net V3中融合坐标注意力机制,生成一对方向感知特征图,提升空间信息编码能力;改进细化融合特征金字塔网络,构建对称的大尺度深度可分离卷积,提高感受野的范围;通过引入残差分支,以串联的方式融合细化不同尺度的特征信息,提高对小尺度船舶目标的检测能力。基于Seaships数据集的试验结果表明,提出的模型与YOLOv5和YOLOX等相比,具有规模小、实时性好和检测精度高等优势。