It is well known that there is abundant water resources in basin of the Yangtze River, the first largest river in China, which is mainly located in Southern China. However, water resources is very scarce in the basin ...It is well known that there is abundant water resources in basin of the Yangtze River, the first largest river in China, which is mainly located in Southern China. However, water resources is very scarce in the basin of the Yellow River, which is mainly located in Northern China. So the western route project of south-north water transfer scheme (WRP-SNWTS) aims to transfer water from the Yangtze River to the Yellow River. The area of WRP-SNWT, located in the upper reaches of the Yangtze River and the main areas of Sichuan and the marginal areas of the Qinghai-Tibet Plateau, has sufficient water resources but fragile ecology and environment. Therefore, it is necessary for WRP-SNWT to analyze the ecology water required. Based on the planning principles of from low elevation to high elevation, from small to large, from short to long and from easy to difficulty, the WRP-SNWT will be constructed through three stage projects. The western route first stage project of the south-north water transfer scheme (WRFST-SNWTS) is planned to transfer 4×10^9m^3/a from six tributaries of the Yalong river and from Dadu river to Jiaqu of Yellow River.. Daqu river and Niqu river are the branches of Xianshui river. Sequ river, Duke river, Make river and Ake river are the branches of Dadu river, which account for 65-70% of the total river run-off. It need more research and the rest run-off can satisfy channel ecology water required. According to analysis ecological water required which mainly satisfy for aquicolous biology in water-exporting region, such as low air temperature. Fish and aquicolous biology main living from May to August, and rivers are iced up from December to March of next year, ecology water required mainly for fish and aquicolous biology. The flow criterion of Tennant method is modified. The ecology water required of WRFSP-SNWTS is estimated by the flow data of Zhuwo gauging station, Zhuba gauging station, Chuosijia gauging station and Zumuzu gauging station. The result show that the ecology water required calculated by modified Tennant less 1 l percent than that of Tennant. This estimating result can supply more water resources for transferring to Yellow River. Meanwhile, this can supply gist for research transferring water of WRFSP-SNWTS.展开更多
The over-exploitation of water resources in the Haihe River Basin (HRB) has now become a serious problem. This is clearly evidenced by the fact that many local rivers and lakes are drying up and the total amount of ...The over-exploitation of water resources in the Haihe River Basin (HRB) has now become a serious problem. This is clearly evidenced by the fact that many local rivers and lakes are drying up and the total amount of over-exploited groundwater has reached over 1000×10^8m^3. It is important to note that the exploitation of water resources in HRB was reasonable before 1979. After 1980, however, over-exploitation happened with an annual average amount of 40×10^8m^3. Both the dry season and rapid economic growth in HRB took place at the same time. Therefore, the over-exploitation of water in HRB was actually the negative result of the conjunction of a continuous dry season and rapid economic growth. So the over-exploitation would not be as serious as it is today if either of the above two stopped. After the first stage of south-to-north water transfer project, the water shortage problem in HRB could be eased for the following reasons: firstly, water transfer project will bring to the Basin 60x108m3 water resources; secondly, a wet season will come back eventually according to natural law of climate variability; finally, its agricultural and industrial use and total water consumption all have decreased from the peak value, so that the groundwater table will raise certainly and ecological water in rivers and lakes that were dried-up will be partly restored. In the future, the main problem of water resources security in HRB will include water pollution, operation risk of the south-to-north water transfer project, groundwater pollution and engineering geological hazards that may be brought by groundwater rise. The proposed countermeasures are as follows: keeping strengthening water demand management, raising water price as well as subsidies for the low- income family and improving other water related policies, preventing and dealing with water pollution seriously and getting fully prepared for the operation of south-to-north water transfer project.展开更多
The Western Route of the South-to-North Water Diversion Project is an important trans-basin diversion project to transfer water from the upstream Yangtze River and its tributaries (water-exporting area), to the upst...The Western Route of the South-to-North Water Diversion Project is an important trans-basin diversion project to transfer water from the upstream Yangtze River and its tributaries (water-exporting area), to the upstream of the Yellow River (water- importing area). The long-term hydrologieal data from 14 stream gauging stations in the Western Route area and techniques including the pre-whitening approach, non-parametric test, Bayes, law, variance analysis extrapolation, and Wavelet Analysis are applied to identify the streamflow eharacteristics and trends, streamflow time series cross-correlations, wetness-dryness encountering probability, and periodicities that occurred over the last 50 years. The results show that the water-exporting area, water- importing area, and the streteh downstream of the water-exporting have synehronization in high-low flow relationship, whereas they display non- synchronization in long-term evolution. This corresponds to the complicated and variable climate of the plateau region. There is no obvious increasing or decreasing trend in runoff at any gauging station. The best hydrological eompensation probability for rivers where water is diverted is about 25% to lO%, and those rivers influenced significantly by diversion are the Jinsha and Yalong rivers. Proper planning and design of compensation reservoirs for the water-exporting area and stretch downstream of the water- exporting area can increase the hydrological compensation possibility from water-exporting area to the water-importing area, and reduce the impact on the stretch of river downstream of the water- exporting area.展开更多
Water diversion projects are an effective measure to mitigate water shortages in water-limited areas.Understanding the risk of such projects increasing concurrent drought between the water intake and receiving regions...Water diversion projects are an effective measure to mitigate water shortages in water-limited areas.Understanding the risk of such projects increasing concurrent drought between the water intake and receiving regions is essential for sustainable water management.This study calculates concurrent drought probability between the water intake and receiving regions of the Hanjiang to Weihe River Water Diversion Project using Standardized Precipitation Index and Copula functions.Results showed an increasing trend in drought probability across both the water intake and receiving regions from 2.67%and 8.38%to 12.47%and 14.18%,respectively,during 1969-2018.The return period of concurrent drought decreased from 111.11 to 13.05 years,indicating larger risk of simultaneous drought between the two regions.Projections from CMIP6 suggested that under the SSP 2-4.5 and 5-8.5 scenarios,concurrent drought probability would increase by 2.40%and 7.72%in 2019-2050 compared to that in 1969-1990,respectively.Although increases in precipitation during 2019-2050 could potentially alleviate drought conditions relative to those during 1991-2018,high precipitation variability adds to the uncertainty about future concurrent drought.These findings provide a basis for better understanding concurrent drought and its impact on water diversion projects in a changing climate,and facilitate the establishment of adaptation countermeasures to ensure sustainable water availability.展开更多
The planning Yalong-River water transfer project will transfer 5.65 billion cubic meters water from the Yalong River into the Yellow River per year.The Yalong River will be dramatically impacted hydrologically and eco...The planning Yalong-River water transfer project will transfer 5.65 billion cubic meters water from the Yalong River into the Yellow River per year.The Yalong River will be dramatically impacted hydrologically and ecologically because more than 60% of the runoff will be diverted.An ecohydrological model was used to evaluate the impacts of the project on river corridor and wetland in this study.Schizothorax is a typical plateau river species and was used as the indicator species for assessment of the impact of water transfer project.The model simulated the habitat area of Schizothorax in the reach between the Reba Dam and the Ganzi Hydrology Station on the Yalong River.The Reba Dam,A'an Dam and Renda Dam will be constructed in the Yalong River for enhancing the water level for water diversion into the Yellow River.The velocity,channel width,runoff,and water depth will be reduced due to the water transfer,especially during flood season.The reduction in the velocity,channel width,runoff and water depth will occur mainly in the reach near the three dams and the reduction will be reduced to a minimum level in a distance about 100 km downstream of the dams.The maximum net water loss of Kasha Lake is only 1197200 m3,only 0.3% of runoff flowing into the lake.The project cannot bring adverse effect on the lake.The habitat area of Schizothorax in the Yalong River might be reduced if the water was transferred from the Reba Dam.The habitat area of this species will be reduced more than 40%.展开更多
文摘It is well known that there is abundant water resources in basin of the Yangtze River, the first largest river in China, which is mainly located in Southern China. However, water resources is very scarce in the basin of the Yellow River, which is mainly located in Northern China. So the western route project of south-north water transfer scheme (WRP-SNWTS) aims to transfer water from the Yangtze River to the Yellow River. The area of WRP-SNWT, located in the upper reaches of the Yangtze River and the main areas of Sichuan and the marginal areas of the Qinghai-Tibet Plateau, has sufficient water resources but fragile ecology and environment. Therefore, it is necessary for WRP-SNWT to analyze the ecology water required. Based on the planning principles of from low elevation to high elevation, from small to large, from short to long and from easy to difficulty, the WRP-SNWT will be constructed through three stage projects. The western route first stage project of the south-north water transfer scheme (WRFST-SNWTS) is planned to transfer 4×10^9m^3/a from six tributaries of the Yalong river and from Dadu river to Jiaqu of Yellow River.. Daqu river and Niqu river are the branches of Xianshui river. Sequ river, Duke river, Make river and Ake river are the branches of Dadu river, which account for 65-70% of the total river run-off. It need more research and the rest run-off can satisfy channel ecology water required. According to analysis ecological water required which mainly satisfy for aquicolous biology in water-exporting region, such as low air temperature. Fish and aquicolous biology main living from May to August, and rivers are iced up from December to March of next year, ecology water required mainly for fish and aquicolous biology. The flow criterion of Tennant method is modified. The ecology water required of WRFSP-SNWTS is estimated by the flow data of Zhuwo gauging station, Zhuba gauging station, Chuosijia gauging station and Zumuzu gauging station. The result show that the ecology water required calculated by modified Tennant less 1 l percent than that of Tennant. This estimating result can supply more water resources for transferring to Yellow River. Meanwhile, this can supply gist for research transferring water of WRFSP-SNWTS.
基金supported by the National Natural Sciences Fund of China (40971298)
文摘The over-exploitation of water resources in the Haihe River Basin (HRB) has now become a serious problem. This is clearly evidenced by the fact that many local rivers and lakes are drying up and the total amount of over-exploited groundwater has reached over 1000×10^8m^3. It is important to note that the exploitation of water resources in HRB was reasonable before 1979. After 1980, however, over-exploitation happened with an annual average amount of 40×10^8m^3. Both the dry season and rapid economic growth in HRB took place at the same time. Therefore, the over-exploitation of water in HRB was actually the negative result of the conjunction of a continuous dry season and rapid economic growth. So the over-exploitation would not be as serious as it is today if either of the above two stopped. After the first stage of south-to-north water transfer project, the water shortage problem in HRB could be eased for the following reasons: firstly, water transfer project will bring to the Basin 60x108m3 water resources; secondly, a wet season will come back eventually according to natural law of climate variability; finally, its agricultural and industrial use and total water consumption all have decreased from the peak value, so that the groundwater table will raise certainly and ecological water in rivers and lakes that were dried-up will be partly restored. In the future, the main problem of water resources security in HRB will include water pollution, operation risk of the south-to-north water transfer project, groundwater pollution and engineering geological hazards that may be brought by groundwater rise. The proposed countermeasures are as follows: keeping strengthening water demand management, raising water price as well as subsidies for the low- income family and improving other water related policies, preventing and dealing with water pollution seriously and getting fully prepared for the operation of south-to-north water transfer project.
基金supported by the China Meteorological Data Sharing Service System,the Bureau of Hydrology,and Water Resources of Sichuan Province,China
文摘The Western Route of the South-to-North Water Diversion Project is an important trans-basin diversion project to transfer water from the upstream Yangtze River and its tributaries (water-exporting area), to the upstream of the Yellow River (water- importing area). The long-term hydrologieal data from 14 stream gauging stations in the Western Route area and techniques including the pre-whitening approach, non-parametric test, Bayes, law, variance analysis extrapolation, and Wavelet Analysis are applied to identify the streamflow eharacteristics and trends, streamflow time series cross-correlations, wetness-dryness encountering probability, and periodicities that occurred over the last 50 years. The results show that the water-exporting area, water- importing area, and the streteh downstream of the water-exporting have synehronization in high-low flow relationship, whereas they display non- synchronization in long-term evolution. This corresponds to the complicated and variable climate of the plateau region. There is no obvious increasing or decreasing trend in runoff at any gauging station. The best hydrological eompensation probability for rivers where water is diverted is about 25% to lO%, and those rivers influenced significantly by diversion are the Jinsha and Yalong rivers. Proper planning and design of compensation reservoirs for the water-exporting area and stretch downstream of the water- exporting area can increase the hydrological compensation possibility from water-exporting area to the water-importing area, and reduce the impact on the stretch of river downstream of the water- exporting area.
基金National Natural Science Foundation of China(42171095)National Natural Science Foundation of China(41801333)+1 种基金Natural Science Foundation of Shaanxi Province(2020JQ-417)Social Science Foundation of Shaanxi Province(2020D039)。
文摘Water diversion projects are an effective measure to mitigate water shortages in water-limited areas.Understanding the risk of such projects increasing concurrent drought between the water intake and receiving regions is essential for sustainable water management.This study calculates concurrent drought probability between the water intake and receiving regions of the Hanjiang to Weihe River Water Diversion Project using Standardized Precipitation Index and Copula functions.Results showed an increasing trend in drought probability across both the water intake and receiving regions from 2.67%and 8.38%to 12.47%and 14.18%,respectively,during 1969-2018.The return period of concurrent drought decreased from 111.11 to 13.05 years,indicating larger risk of simultaneous drought between the two regions.Projections from CMIP6 suggested that under the SSP 2-4.5 and 5-8.5 scenarios,concurrent drought probability would increase by 2.40%and 7.72%in 2019-2050 compared to that in 1969-1990,respectively.Although increases in precipitation during 2019-2050 could potentially alleviate drought conditions relative to those during 1991-2018,high precipitation variability adds to the uncertainty about future concurrent drought.These findings provide a basis for better understanding concurrent drought and its impact on water diversion projects in a changing climate,and facilitate the establishment of adaptation countermeasures to ensure sustainable water availability.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51027006,51109224)the National Key Basic Research Program of China ("973" Program) (Grant No. 2010CB951102)the National Key Project of Scientific and Technical Supporting Program (Grant No. 2006BAB04A08)
文摘The planning Yalong-River water transfer project will transfer 5.65 billion cubic meters water from the Yalong River into the Yellow River per year.The Yalong River will be dramatically impacted hydrologically and ecologically because more than 60% of the runoff will be diverted.An ecohydrological model was used to evaluate the impacts of the project on river corridor and wetland in this study.Schizothorax is a typical plateau river species and was used as the indicator species for assessment of the impact of water transfer project.The model simulated the habitat area of Schizothorax in the reach between the Reba Dam and the Ganzi Hydrology Station on the Yalong River.The Reba Dam,A'an Dam and Renda Dam will be constructed in the Yalong River for enhancing the water level for water diversion into the Yellow River.The velocity,channel width,runoff,and water depth will be reduced due to the water transfer,especially during flood season.The reduction in the velocity,channel width,runoff and water depth will occur mainly in the reach near the three dams and the reduction will be reduced to a minimum level in a distance about 100 km downstream of the dams.The maximum net water loss of Kasha Lake is only 1197200 m3,only 0.3% of runoff flowing into the lake.The project cannot bring adverse effect on the lake.The habitat area of Schizothorax in the Yalong River might be reduced if the water was transferred from the Reba Dam.The habitat area of this species will be reduced more than 40%.