Engineering high‐performance and low‐cost bifunctional catalysts for H_(2)(hydrogen evolution reaction[HER])and O_(2)(oxygen evolution reaction[OER])evolution under industrial electrocatalytic conditions remains cha...Engineering high‐performance and low‐cost bifunctional catalysts for H_(2)(hydrogen evolution reaction[HER])and O_(2)(oxygen evolution reaction[OER])evolution under industrial electrocatalytic conditions remains challenging.Here,for the first time,we use the stronger electronegativity of a rare‐Earth yttrium ion(Y^(3+))to induce in situ NiCo‐layered double‐hydroxide nanosheets from NiCo foam(NCF)treated by a dielectric barrier discharge plasma NCF(PNCF),and then obtain nitrogen‐doped YNiCo phosphide(N‐YNiCoP/PNCF)after the phosphating process using radiofrequency plasma in nitrogen.The obtained NYNiCoP/PNCF has a large specific surface area,rich heterointerfaces,and an optimized electronic structure,inducing high electrocatalytic activity in HER(331mV vs.2000mA cm^(−2))and OER(464mV vs.2000mA cm^(−2))reactions in 1MKOH electrolyte.X‐ray absorption spectroscopy and density functional theory quantum chemistry calculations reveal that the coordination number of CoNi decreased with the incorporation of Y atoms,which induce much shorter bonds of Ni and Co ions and promote long‐term stability of N‐YNiCoP in HER and OER under the simulated industrial conditions.Meanwhile,the CoN‐YP_(5) heterointerface formed by plasma N‐doping is the active center for overall water splitting.This work expands the applications of rare‐Earth elements in engineering bifunctional electrocatalysts and provides a new avenue for designing highperformance transition‐metal‐based catalysts in the renewable energy field.展开更多
Short Retraction NoticeThe paper does not meet the standards of "Journal of Applied Mathematics and Physics". This article has been retracted to straighten the academic record. In making this decision the Ed...Short Retraction NoticeThe paper does not meet the standards of "Journal of Applied Mathematics and Physics". This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused.Editor guiding this retraction: Prof. Wen-Xiu Ma (EiC of JAMP)The full retraction notice in PDF is preceding the original paper, which is marked "RETRACTED".展开更多
Magnetic bubbles have again become a subject of significant attention following the experimental observation of topologically nontrivial magnetic skyrmions. In recent work, tailoring the shape of the bubbles is consid...Magnetic bubbles have again become a subject of significant attention following the experimental observation of topologically nontrivial magnetic skyrmions. In recent work, tailoring the shape of the bubbles is considered a key factor for their dynamics in spintronic devices. In addition to the reported circular, elliptical, and square bubbles, here we observe triangular bubble domains in bismuth-doped yttrium iron garnet(Bi-YIG) using Kerr microscopy. The bubble domains evolve from discrete circular to latticed triangular and hexagonal shapes. Further, the orientation of the triangular bubbles in the hexagonal lattices can be flipped by decreasing the magnetic field. The sixfold in-plane magnetic anisotropy of Bi-YIG(111) crystal, which is presumably the mechanism underlying the triangular shape of the bubbles, is measured as1179 erg/cm~3. The study of the morphologies of topologically trivial bubbles in YIG offers insight into nontrivial spin textures, which is appealing for future spintronic applications.展开更多
目的:比较使用不同模式Er:YAG激光以及传统车针去龋后牙本质与复合树脂的粘接强度。方法:选用人类离体磨牙模拟龋坏,分别采用Er:YAG激光中短脉冲(medium short pulse,MSP)模式、Er:YAG激光超短脉冲(super short pulse,SSP)模式和传统车...目的:比较使用不同模式Er:YAG激光以及传统车针去龋后牙本质与复合树脂的粘接强度。方法:选用人类离体磨牙模拟龋坏,分别采用Er:YAG激光中短脉冲(medium short pulse,MSP)模式、Er:YAG激光超短脉冲(super short pulse,SSP)模式和传统车针去除模拟的龋坏后,采用自酸蚀粘接剂将牙体标本与复合树脂粘接制成试件。使用万能试验机对试件进行拉伸试验,测得断裂负荷和粘接强度,并采用单因素方差分析和Tukey多重比较进行统计学分析。采用扫描电子显微镜观察3种不同去龋方式处理后的牙本质表面形态,以及涂布自酸蚀粘接剂并固化后试件的横截面形态。结果:使用Er:YAG激光MSP模式处理后牙本质与复合树脂的粘接强度最高,SSP模式处理后次之,传统车针处理后最低,但差异无统计学意义(P>0.05)。扫描电子显微镜图像显示,Er:YAG激光MSP模式处理后的牙本质表面较平坦,牙本质小管内几乎没有残屑;Er:YAG激光SSP模式处理后的牙本质表面呈现鳞片状,牙本质小管内可见少量碎屑;而传统车针处理后牙本质小管大部分处于被表面牙本质部分甚至完全遮盖的状态,牙本质小管内充满残屑。结论:使用Er:YAG激光去龋相比传统车针去龋可以获得较好的牙本质粘接强度,且对牙本质小管的处理深度和洁净度明显优于传统车针去龋,其中MSP模式更佳。展开更多
The yttrium as a sintering aid was introduced into polycarbosilane(PCS) to prepare yttrium-containing PCS(PYCS).Two types of yttrium-containing SiC fibres,the SiC(OY) fibres and the SiC(Y) fibres,were fabricat...The yttrium as a sintering aid was introduced into polycarbosilane(PCS) to prepare yttrium-containing PCS(PYCS).Two types of yttrium-containing SiC fibres,the SiC(OY) fibres and the SiC(Y) fibres,were fabricated with PYCS.The structural evolution and the associated properties on changing from SiC(OY) to SiC(Y) fibres during the sintering process were studied.The chemical composition of the SiC(OY) fibres is SiC1.53O0.22Y0.005 with an amorphous structure.The composition of SiC(Y) fibres is SiC1.23O0.05Y0.005.The fibres are composed of a large number of β-SiC crystallites with a size of 50 nm and a small amount of α-SiC crystalline.The tensile strength and fracture toughness of the SiC(OY) fibres are 2.25 GPa and 2.37 MPa·m1/2,respectively,and 1.61 GPa,1.91 MPa·m1/2,respectively for SiC(Y) fibres.The SiC(Y) fibres have a higher thermal stability than the SiC(OY) fibres.展开更多
This study aimed to investigate the toxicity of rare earth ion yttrium under the stress of leaching agent ammonium sulfate (NH4)2SO4. [Method] By using earthworms as indicator organisms of environmental pol ution, a...This study aimed to investigate the toxicity of rare earth ion yttrium under the stress of leaching agent ammonium sulfate (NH4)2SO4. [Method] By using earthworms as indicator organisms of environmental pol ution, acute toxic ef-fects of rare earth yttrium on earthworms under the stress of ammonium sulfate were investigated with filter paper contact method. [Result] Under single stress of rare earth yttrium, the semi-lethal concentration after 48 and 24 h was LC50=213.41 mg/L and LC50=322.63 mg/L, respectively. ② Under single stress of ammonium sul-fate, the semi-lethal concentration after 48 h and 24 h was LC50=13.89 g/L and LC50=15.05 g/L, respectively. ③ In combined treatment of low concentration (10 g/L) of ammonium sulfate and different doses of rare earth yttrium, the semi-lethal con-centration after 48 and 24 h was LC50=198.65 g/L and LC50=399.85 g/L, respective-ly; in combined treatment of middle concentration (14 g/L) of ammonium sulfate and different doses of rare earth yttrium, the semi-lethal concentration after 48 and 24 h was LC50=167.3 mg/L and LC50=256.73 mg/L, respectively; in combined treatment of high concentration (20 g/L) of ammonium sulfate and different doses of rare earth yttrium, the semi-lethal concentration after 48 h and 24 h was LC50=31.03 mg/L and LC50=127.65 mg/L, respectively. [Conclusion] Low concentration of ammonium sulfate could reduce the toxicity of rare earth yttrium to earthworms and produce certain antagonism against rare earth yttrium; middle concentration ammonium sulfate in-creased the toxicity of rare earth yttrium to earthworms and produced relatively sig-nificant synergistic effects; high concentration ammonium sulfate significantly in-creased the toxicity of rare earth yttrium to earthworms. Compared with ammonium sulfate, dead earthworms exposed to rare earth yttrium were more easily fractured, and living earthworms showed insensitive response to acupuncture.展开更多
For the accurate prediction of equilibrium distribution ratios of rare earth metals during solvent extraction under non-ideal conditions, the extraction equilibria of yttrium (Ⅲ) and europium (Ⅲ) from the hydroc...For the accurate prediction of equilibrium distribution ratios of rare earth metals during solvent extraction under non-ideal conditions, the extraction equilibria of yttrium (Ⅲ) and europium (Ⅲ) from the hydrochloric acid solutions with P507 in Shellsol D70 were studied. A chemically-based model was established and the extraction equilibrium constants were determined by the nonlinear least squares method. The proposed model involves the cation exchange reaction and the solvation extraction in the low and high acidity regions, respectively. In the model, the nonideality of the aqueous phase and was corrected by considering the complexation of the metals with Cl- and by replacing with its effective concentration, respectively. This model was verified by fair agreement between the calculated metal distribution ratios and those experimentally obtained in the single metal systems. The feed concentrations for the systems are in wide ranges of the metal (up to 0.1 mol/L), hydrochloric acid (0.07-3.00 mol/L) and the extractant (0.25-1.00 mol/L). The model enables the engineering prediction of the equilibrium distribution ratios with good accuracy in a binary metal system.展开更多
基金National Natural Science Foundation of China,Grant/Award Number:52177162the Natural Science Foundation of Zhejiang Province,Grant/Award Numbers:LZ22E070003,LQ22E020006+1 种基金the Funding Project for Academic/Technical Leaders of Jiangxi Province,Grant/Award Number:20225BCJ22003the Natural Science Foundation of Jiangxi Province,Grant/Award Number:20212ACB211001。
文摘Engineering high‐performance and low‐cost bifunctional catalysts for H_(2)(hydrogen evolution reaction[HER])and O_(2)(oxygen evolution reaction[OER])evolution under industrial electrocatalytic conditions remains challenging.Here,for the first time,we use the stronger electronegativity of a rare‐Earth yttrium ion(Y^(3+))to induce in situ NiCo‐layered double‐hydroxide nanosheets from NiCo foam(NCF)treated by a dielectric barrier discharge plasma NCF(PNCF),and then obtain nitrogen‐doped YNiCo phosphide(N‐YNiCoP/PNCF)after the phosphating process using radiofrequency plasma in nitrogen.The obtained NYNiCoP/PNCF has a large specific surface area,rich heterointerfaces,and an optimized electronic structure,inducing high electrocatalytic activity in HER(331mV vs.2000mA cm^(−2))and OER(464mV vs.2000mA cm^(−2))reactions in 1MKOH electrolyte.X‐ray absorption spectroscopy and density functional theory quantum chemistry calculations reveal that the coordination number of CoNi decreased with the incorporation of Y atoms,which induce much shorter bonds of Ni and Co ions and promote long‐term stability of N‐YNiCoP in HER and OER under the simulated industrial conditions.Meanwhile,the CoN‐YP_(5) heterointerface formed by plasma N‐doping is the active center for overall water splitting.This work expands the applications of rare‐Earth elements in engineering bifunctional electrocatalysts and provides a new avenue for designing highperformance transition‐metal‐based catalysts in the renewable energy field.
文摘Short Retraction NoticeThe paper does not meet the standards of "Journal of Applied Mathematics and Physics". This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused.Editor guiding this retraction: Prof. Wen-Xiu Ma (EiC of JAMP)The full retraction notice in PDF is preceding the original paper, which is marked "RETRACTED".
基金support by the National Natural Science Foundation of China (Grant Nos. 52061135105 and 12074025)support by the National Natural Science Foundation of China (Grant Nos. 11974079, 12274083, and 12221004)the Shanghai Municipal Science and Technology Basic Research Project (Grant No. 22JC1400200)。
文摘Magnetic bubbles have again become a subject of significant attention following the experimental observation of topologically nontrivial magnetic skyrmions. In recent work, tailoring the shape of the bubbles is considered a key factor for their dynamics in spintronic devices. In addition to the reported circular, elliptical, and square bubbles, here we observe triangular bubble domains in bismuth-doped yttrium iron garnet(Bi-YIG) using Kerr microscopy. The bubble domains evolve from discrete circular to latticed triangular and hexagonal shapes. Further, the orientation of the triangular bubbles in the hexagonal lattices can be flipped by decreasing the magnetic field. The sixfold in-plane magnetic anisotropy of Bi-YIG(111) crystal, which is presumably the mechanism underlying the triangular shape of the bubbles, is measured as1179 erg/cm~3. The study of the morphologies of topologically trivial bubbles in YIG offers insight into nontrivial spin textures, which is appealing for future spintronic applications.
文摘目的:比较使用不同模式Er:YAG激光以及传统车针去龋后牙本质与复合树脂的粘接强度。方法:选用人类离体磨牙模拟龋坏,分别采用Er:YAG激光中短脉冲(medium short pulse,MSP)模式、Er:YAG激光超短脉冲(super short pulse,SSP)模式和传统车针去除模拟的龋坏后,采用自酸蚀粘接剂将牙体标本与复合树脂粘接制成试件。使用万能试验机对试件进行拉伸试验,测得断裂负荷和粘接强度,并采用单因素方差分析和Tukey多重比较进行统计学分析。采用扫描电子显微镜观察3种不同去龋方式处理后的牙本质表面形态,以及涂布自酸蚀粘接剂并固化后试件的横截面形态。结果:使用Er:YAG激光MSP模式处理后牙本质与复合树脂的粘接强度最高,SSP模式处理后次之,传统车针处理后最低,但差异无统计学意义(P>0.05)。扫描电子显微镜图像显示,Er:YAG激光MSP模式处理后的牙本质表面较平坦,牙本质小管内几乎没有残屑;Er:YAG激光SSP模式处理后的牙本质表面呈现鳞片状,牙本质小管内可见少量碎屑;而传统车针处理后牙本质小管大部分处于被表面牙本质部分甚至完全遮盖的状态,牙本质小管内充满残屑。结论:使用Er:YAG激光去龋相比传统车针去龋可以获得较好的牙本质粘接强度,且对牙本质小管的处理深度和洁净度明显优于传统车针去龋,其中MSP模式更佳。
基金Projects (51175444,50532010) supported by the National Natural Science Foundation of ChinaProject (2011121002) supported by the Fundamental Research Funds for the Central Universities, ChinaProject (2009J1009) supported by Scientific and Technological Innovation Platform of Fujian Province,China
文摘The yttrium as a sintering aid was introduced into polycarbosilane(PCS) to prepare yttrium-containing PCS(PYCS).Two types of yttrium-containing SiC fibres,the SiC(OY) fibres and the SiC(Y) fibres,were fabricated with PYCS.The structural evolution and the associated properties on changing from SiC(OY) to SiC(Y) fibres during the sintering process were studied.The chemical composition of the SiC(OY) fibres is SiC1.53O0.22Y0.005 with an amorphous structure.The composition of SiC(Y) fibres is SiC1.23O0.05Y0.005.The fibres are composed of a large number of β-SiC crystallites with a size of 50 nm and a small amount of α-SiC crystalline.The tensile strength and fracture toughness of the SiC(OY) fibres are 2.25 GPa and 2.37 MPa·m1/2,respectively,and 1.61 GPa,1.91 MPa·m1/2,respectively for SiC(Y) fibres.The SiC(Y) fibres have a higher thermal stability than the SiC(OY) fibres.
基金Supported by National Natural Science Foundation of China(Grant No.21067003,51364015)National High-Tech Research and Development Program of China(GrantNo.2012BAC11B07)+1 种基金Natural Science Foundation of Jiangxi Province(Grant No.20114BAB203024)Science and Technology Project of the Education Department ofJiangxi Province~~
文摘This study aimed to investigate the toxicity of rare earth ion yttrium under the stress of leaching agent ammonium sulfate (NH4)2SO4. [Method] By using earthworms as indicator organisms of environmental pol ution, acute toxic ef-fects of rare earth yttrium on earthworms under the stress of ammonium sulfate were investigated with filter paper contact method. [Result] Under single stress of rare earth yttrium, the semi-lethal concentration after 48 and 24 h was LC50=213.41 mg/L and LC50=322.63 mg/L, respectively. ② Under single stress of ammonium sul-fate, the semi-lethal concentration after 48 h and 24 h was LC50=13.89 g/L and LC50=15.05 g/L, respectively. ③ In combined treatment of low concentration (10 g/L) of ammonium sulfate and different doses of rare earth yttrium, the semi-lethal con-centration after 48 and 24 h was LC50=198.65 g/L and LC50=399.85 g/L, respective-ly; in combined treatment of middle concentration (14 g/L) of ammonium sulfate and different doses of rare earth yttrium, the semi-lethal concentration after 48 and 24 h was LC50=167.3 mg/L and LC50=256.73 mg/L, respectively; in combined treatment of high concentration (20 g/L) of ammonium sulfate and different doses of rare earth yttrium, the semi-lethal concentration after 48 h and 24 h was LC50=31.03 mg/L and LC50=127.65 mg/L, respectively. [Conclusion] Low concentration of ammonium sulfate could reduce the toxicity of rare earth yttrium to earthworms and produce certain antagonism against rare earth yttrium; middle concentration ammonium sulfate in-creased the toxicity of rare earth yttrium to earthworms and produced relatively sig-nificant synergistic effects; high concentration ammonium sulfate significantly in-creased the toxicity of rare earth yttrium to earthworms. Compared with ammonium sulfate, dead earthworms exposed to rare earth yttrium were more easily fractured, and living earthworms showed insensitive response to acupuncture.
基金Project(P02426)supported by the Japan Society for the Promotion of Science for Postdoctoral Fellowships for Foreign Researchers
文摘For the accurate prediction of equilibrium distribution ratios of rare earth metals during solvent extraction under non-ideal conditions, the extraction equilibria of yttrium (Ⅲ) and europium (Ⅲ) from the hydrochloric acid solutions with P507 in Shellsol D70 were studied. A chemically-based model was established and the extraction equilibrium constants were determined by the nonlinear least squares method. The proposed model involves the cation exchange reaction and the solvation extraction in the low and high acidity regions, respectively. In the model, the nonideality of the aqueous phase and was corrected by considering the complexation of the metals with Cl- and by replacing with its effective concentration, respectively. This model was verified by fair agreement between the calculated metal distribution ratios and those experimentally obtained in the single metal systems. The feed concentrations for the systems are in wide ranges of the metal (up to 0.1 mol/L), hydrochloric acid (0.07-3.00 mol/L) and the extractant (0.25-1.00 mol/L). The model enables the engineering prediction of the equilibrium distribution ratios with good accuracy in a binary metal system.