The dynamics of soil organic carbon(SOC)in cropland is one of the central issues related to both soil fertility and environmental safety. However, little information is available at county level regarding the spatiote...The dynamics of soil organic carbon(SOC)in cropland is one of the central issues related to both soil fertility and environmental safety. However, little information is available at county level regarding the spatiotemporal variability of SOC in the southwestern mountainous region of China. Thus, this study aimed to explore spatiotemporal changes of SOC in the cultivated soil layer of dry land in Mojiang County,Yunnan Province, China. Data were obtained from the second national soil survey(SNSS) of 1985 and soil tests for fertilizer application carried out by the Mojiang Agricultural Bureau in 2006. The ANOVA test was applied to determine any significant differences between the datasets, while semivariogram analysis was performed on geostatistics via an ordinary Kriging method in order to map spatial patterns of soil organic carbon density(SOCD). The results revealed that SOCD in the cultivated soil layer significantly decreased from 3.93 kg m^(-2) in 1985 to 2.89 kg m^(-2) in 2006, with a total soil organic carbon stock(SOCS) decrease of 41.54×10~4 t over the same period. SOCS levels fell most markedly in yellow-brown soil at a rate of51.52%, while an increase of 8.70% was found in the analysed latosol. Geostatistical analysis also showed that the recorded changes in SOCD between 1985 and2006 were spatially structured. The decreasing trend might be attributed to the combined action of intense cultivation, major crop residue removal without any protective tillage measures, unreasonable fertilization and natural climatic diversity inducing a large decrease in SOC in the studied cultivated dry land region of Mojiang County. Therefore, management measures such as protective tillage should be undertaken in order to enhance soil C sequestration.展开更多
The research of land use/land cover change (LUCC) is the core content of global environmental change research and an important part of the sustainable development research. Taking the Midu County of western Yunnan P...The research of land use/land cover change (LUCC) is the core content of global environmental change research and an important part of the sustainable development research. Taking the Midu County of western Yunnan Plateau as the example, GIS technology was used to make the spatial overlay with the land use database in 2009 and land change survey database in 2014 of Midu County, so as to analyze the changes of land use of the county, and reveal the law of land use change, with the aim to provide the basis for further rational utilization of land resources.展开更多
The decomposition of plant litter is a key process of litter decomposition to global climate warming in plateau in the flows of energy and nutrients in ecosystems. However, the response wetlands remains largely unknow...The decomposition of plant litter is a key process of litter decomposition to global climate warming in plateau in the flows of energy and nutrients in ecosystems. However, the response wetlands remains largely unknown. In this study, we conducted a one-year litter decomposition experiment along an elevation gradient from 1891 m to 3260 m on the Yurman Plateau of Southwest China, using different litter types to determine the influences of climate change, litter quality and microenvironment on the decomposition rate. The results showed that the average decomposition rate (K) increased from 0.608 to 1.152, and the temperature sensitivity of litter mass losses was approximately 4.98%/℃ along the declining elevation gradient. Based on a correlation analysis, N concentrations and C : N ratios in the litter were the best predictors of the decomposition rate, with significantly positive and negative correlations, respectively. Additionally, the cumulative effects of decomposition were clearly observed in the mixtures of Scirpus tabernaemontani and Zizania caduciflora. Moreover, the litter decomposition rate in the water was higher than that in the sediment, especially in high-elevation areas where the microenvironment was significantly affected by temperature. These results suggest that future climate warming will have significant impacts on plateau wetlands, which have important fimctions in biogeochemical cycling in cold highland ecosystems.展开更多
Two-factor analysis of variance and redundancy analysis were used to analyze the characte-ristics of soil organic carbon total nitrogen storage in garden land,forestland,grassland,farmland,and bare land in the Dachunh...Two-factor analysis of variance and redundancy analysis were used to analyze the characte-ristics of soil organic carbon total nitrogen storage in garden land,forestland,grassland,farmland,and bare land in the Dachunhe watershed of Jinning District,Kunming City,Yunnan Province,China.The effects of the soil organic carbon,total nitrogen stratification ratio,soil physical and chemical factors on the storage characteristics of organic carbon and total nitrogen of different land-use types were analyzed.The results show that the rates of carbon and nitrogen stratification in soil from 0-20 cm and 40-60 cm of the same land-use types differed are statistically significant(P<0.05).The organic carbon and total nitrogen stratification ratio SR1 of garden land soil are 38.5%and 25.3%,respectively,which are higher than SR^(2).The soil organic carbon and total nitrogen stratification ratio SR^(2) of different land-use types are greater than SR1.There are statistically significant differences in the SR^(2) soil organic carbon and total nitrogen stratification ratios(P<0.05).Soil organic carbon and total nitrogen storage of diffe-rent land-use types gradually decrease with increasing soil depth,with the maximum soil organic carbon and total nitrogen storage in the 0-20 cm soil layer.Soil organic carbon and total nitrogen sto-rage at the same soil depth are significantly different(P<0.05).Soil organic carbon and total nitrogen storage in the garden land are greater than those in the other land-use types.Soil organic carbon and total nitrogen storage in 0-20 cm garden land are 4.96 and 3.19 times than those in bare land,respectively;soil organic carbon and total nitrogen storage are explained by 93.66%and 1.53%in redundancy analysis RDA1 and RDA2,respectively.All physicochemical factors except Available Phosphorus and pH are statistically significance with carbon and nitrogen storage(P<0.05).Soil cationic exchange capacity,Available Phosphorus,C/N ratio,and Moisture Content are positively correlated with organic carbon and total nitrogen storage.In contrast,soil Bulk Density is negatively correlated with organic carbon storage and total nitrogen storage.Available Phosphorus,C/N ratio,and Moisture Content are the main factors promoting soil organic carbon and total nitrogen accumulation.展开更多
As the main external pollution source of lake,nitrogen and phosphorus from agricultural non-point source make a great contribution to the lake eutrophication pollution.Wetland lakefront zone which plays a key role in ...As the main external pollution source of lake,nitrogen and phosphorus from agricultural non-point source make a great contribution to the lake eutrophication pollution.Wetland lakefront zone which plays a key role in externally agricultural non-point source pollution is considered as the biggest barrier for controlling external pollution.In this research,the Jian lake plateau Zizania latifolia wetland lakefront zone was selected for agricultural non-point source pollutions control with the systematic field research,and the lakefront zone was approved to have an effective purification effect on nitrogen and phosphorus from Jinlong River; the theoretical mechanism of lakefront zone removing nutrient was also investigated.Z.latifolia wetland lakefront zone could remove nitrogen and phosphorus from Jinlong River and the removal ratio can reach 55.8-62.52% and 59.47-69.81% respectively.So,we can indicate that the Jian Lake plateau Z.latifolia wetland lakefront zone had a good effect on controlling agricultural non-point source pollution and protecting the environment.展开更多
Yunnan plateau characteristic agriculture is an essential force for increasing farmers' income and promoting prosperity of rural economy. The fundamental position of agriculture should be kept all the time. This p...Yunnan plateau characteristic agriculture is an essential force for increasing farmers' income and promoting prosperity of rural economy. The fundamental position of agriculture should be kept all the time. This paper analyzed practical basis and existing problems in development of Yunnan plateau characteristic agriculture. In line with these problems,it present ideas,main points and objectives of Yunnan plateau characteristic agriculture,and finally came up with recommendations for accelerating development of Yunnan plateau characteristic agriculture.展开更多
The policy of taking the targeted poverty alleviation measures has been the mission of the age in propelling the 13th Five-year Plan and building moderately prosperous society. A good poverty alleviation model is of s...The policy of taking the targeted poverty alleviation measures has been the mission of the age in propelling the 13th Five-year Plan and building moderately prosperous society. A good poverty alleviation model is of significance for the goal. The research introduced a poverty-stricken county-Midu County, Dali Bai Au- tonomous Prefecture, analyzed the basic approaches and the main achievements of "the model of poverty alleviation and income growth by developing plateau-charac- terized agriculture", and proposed some suggestions to promoting and applying this model. The research provides references for plateau-characterized agricultural devel- opment and targeted poverty alleviation strategy.展开更多
Using the observed data from 184 stations over the Yunnan-Guizhou Plateau (YGP) from 1961 to 2005, the long-term trends in sunshine duration, cloud amount, dry visibility (Vd), dry extinction, and water vapor over...Using the observed data from 184 stations over the Yunnan-Guizhou Plateau (YGP) from 1961 to 2005, the long-term trends in sunshine duration, cloud amount, dry visibility (Vd), dry extinction, and water vapor over the YGP are analyzed. The results show that 85% of the stations recorded shortening annual sunshine duration, with the decrease rates between -12.2 and -173.7 h/10yr. Results of Mann-Kendall tests indicate that, among the stations with decreasing sunshine duration, 63.7% of them experienced an abrupt change that started in the 1970s and peaked in the 1980s. This decreasing trend has reversed in the early years of the 21st century. The cloud cover and water vapor content in the mid and lower levels over the YGP had no obvious changes during the study period. The annual averages of Vd declined from 34 km in the 1960s to 27 km at present. The annual mean dry extinction coefficient trended upward, from 0.176 to 0.190, on the YGP from 1980 to 2005. Analyses of cloud cover, water vapor, atmospheric visibility, and dry extinction coefficient revealed that emitted tropospheric aerosols (including air pollutants) resulting from increased energy consumption over the YGP could be a major Factor influencing the reductions of sunshine duration and atmospheric visibility.展开更多
The Cenozoic strata are well developed in the northwest of Yunnan Province, where the eastern boundary of Qing—Zang (Qinghai—Xizang) plateau is located. The rich geo\|records in the Cenozoic strata can help us to re...The Cenozoic strata are well developed in the northwest of Yunnan Province, where the eastern boundary of Qing—Zang (Qinghai—Xizang) plateau is located. The rich geo\|records in the Cenozoic strata can help us to recapitulate the evolution history of Qing—Zang plateau.1\ The Cenozoic Strata Ninglang Formation (Paleocene—Middle Eocene) is composed of massively bedded conglomerate , mudstone in the lower part, purple thinly bedded—medium bedded fine quartz sandstone and sandy shale in the upper part, 600m thick. Lijiang Formation (Upper Eocene) and Jinsichang Formation (Oligocene): conglomerate, with a little sandstone in lower part, claystone, with a little conglomerate in the upper part. Lijiang Formation unconformably overlies on Ninglang Formation or even older strata, 1500~2000m thick. Shuanghe Formation (Miocene): thinly—massively bedded muddy siltstone, fine sandstone, marl, with several layers of coal. It unconformably overlies on Jinsichang Formation or even older strata, 108m thick. Sanying Formation (Pliocene): Claystone, siltstone, with a little lignite in the middle and upper part, conglomerate at the base, 110m thick, widely spread in the northwest of Yunnan.Sheshan Formation (early Pleistocene): pebbles, sands and clay layers. It unconformably overlies on the older strata, 100~187m thick.Heyunsi Formation (middle Pleistocene): poorly sorted and poorly rounded gravel and sands, 100~347m thick.Upper Pleistocene Series: glaciers—gravel, sands and clays; alluvial—sandy gravel layer(terraces); lacustrine—fine sand, silt and clay layer, 100 m thick.Holocene Series: lacustrine—sand, silt and clay layers; alluvial—sandy gravel layer (terraces), 50m thick.展开更多
Climatic characteristics of foreign low latitude plateau regions are firstly introduced.Then,experience and lessons of major foreign low latitude plateau countries in developing modern agriculture are analyzed,includi...Climatic characteristics of foreign low latitude plateau regions are firstly introduced.Then,experience and lessons of major foreign low latitude plateau countries in developing modern agriculture are analyzed,including Indian three agricultural revolutions and agricultural informationization development,application of agricultural biotechnology in Brazil,trade liberalization and economic de-agriculture of Mexico,and Argentina,Saudi Arabia and South Africa attaching great importance to developing modern agriculture relying on science and technology and paying close attention to resource conservation and environmental protection.Combining natural and social resource characteristics of Yunnan plateau agriculture,pertinent implications and recommendations for modern agricultural development in Yunnan are put forward.Specifically,these include strengthening agricultural sci-tech research and development,and extension and application;transforming agricultural development model;enhancing agricultural resource conservation and environmental protection;accelerating developing mountain organic ecological agriculture and autumn agriculture;reinforcing urban and rural integration to develop plateau characteristic agriculture on the basis of local actual conditions.展开更多
The development of agriculture with plateau characteristics is a market-oriented strategic choice,made by Yunnan Province,of agricultural economy with regional characteristics,on the basis of resources and location ad...The development of agriculture with plateau characteristics is a market-oriented strategic choice,made by Yunnan Province,of agricultural economy with regional characteristics,on the basis of resources and location advantages,as well as geographical division of the national economy. The characteristic agribusiness is an important carrier for building a new agricultural management system with plateau characteristics,and also a key way to promote characteristic agricultural industrialization. In this paper,with 26 agribusinesses with plateau characteristics in Yunnan Province as samples,we establish the competitiveness evaluation system for the agribusiness with plateau characteristics,and use the operating data( 2012-2014) and AHP to calculate and the sample business competitiveness index and sort these businesses. Finally,we make a comprehensive analysis on the competitiveness of sample agribusinesses with plateau characteristics in Yunnan Province,in order to provide decision-making basis for promotion of the competitiveness of the agribusiness with plateau characteristics.展开更多
基金supported as a special project by the Agriculture Ministry of China(Grant No.201503119)the Natural Science Foundation of China(Grant No.41471232)
文摘The dynamics of soil organic carbon(SOC)in cropland is one of the central issues related to both soil fertility and environmental safety. However, little information is available at county level regarding the spatiotemporal variability of SOC in the southwestern mountainous region of China. Thus, this study aimed to explore spatiotemporal changes of SOC in the cultivated soil layer of dry land in Mojiang County,Yunnan Province, China. Data were obtained from the second national soil survey(SNSS) of 1985 and soil tests for fertilizer application carried out by the Mojiang Agricultural Bureau in 2006. The ANOVA test was applied to determine any significant differences between the datasets, while semivariogram analysis was performed on geostatistics via an ordinary Kriging method in order to map spatial patterns of soil organic carbon density(SOCD). The results revealed that SOCD in the cultivated soil layer significantly decreased from 3.93 kg m^(-2) in 1985 to 2.89 kg m^(-2) in 2006, with a total soil organic carbon stock(SOCS) decrease of 41.54×10~4 t over the same period. SOCS levels fell most markedly in yellow-brown soil at a rate of51.52%, while an increase of 8.70% was found in the analysed latosol. Geostatistical analysis also showed that the recorded changes in SOCD between 1985 and2006 were spatially structured. The decreasing trend might be attributed to the combined action of intense cultivation, major crop residue removal without any protective tillage measures, unreasonable fertilization and natural climatic diversity inducing a large decrease in SOC in the studied cultivated dry land region of Mojiang County. Therefore, management measures such as protective tillage should be undertaken in order to enhance soil C sequestration.
基金Supported by the Graduates Program of the Fund for Scientific Research of the Education Department of Yunnan Province(2016YJS093)~~
文摘The research of land use/land cover change (LUCC) is the core content of global environmental change research and an important part of the sustainable development research. Taking the Midu County of western Yunnan Plateau as the example, GIS technology was used to make the spatial overlay with the land use database in 2009 and land change survey database in 2014 of Midu County, so as to analyze the changes of land use of the county, and reveal the law of land use change, with the aim to provide the basis for further rational utilization of land resources.
基金Under the auspices of Special Projects of National Key Basic Research Program of China(No.2012CB426509)National Natural Science Foundation of China(No.40971285,31370497,31500409)Yunnan Innovation Talents of Science and Technology Plan of China(No.2012HC007)
文摘The decomposition of plant litter is a key process of litter decomposition to global climate warming in plateau in the flows of energy and nutrients in ecosystems. However, the response wetlands remains largely unknown. In this study, we conducted a one-year litter decomposition experiment along an elevation gradient from 1891 m to 3260 m on the Yurman Plateau of Southwest China, using different litter types to determine the influences of climate change, litter quality and microenvironment on the decomposition rate. The results showed that the average decomposition rate (K) increased from 0.608 to 1.152, and the temperature sensitivity of litter mass losses was approximately 4.98%/℃ along the declining elevation gradient. Based on a correlation analysis, N concentrations and C : N ratios in the litter were the best predictors of the decomposition rate, with significantly positive and negative correlations, respectively. Additionally, the cumulative effects of decomposition were clearly observed in the mixtures of Scirpus tabernaemontani and Zizania caduciflora. Moreover, the litter decomposition rate in the water was higher than that in the sediment, especially in high-elevation areas where the microenvironment was significantly affected by temperature. These results suggest that future climate warming will have significant impacts on plateau wetlands, which have important fimctions in biogeochemical cycling in cold highland ecosystems.
基金Natural Science Foundation of China(51979134,51779113)Yunnan Provincial Education Department Scientific Research Fund Project(2021J0164)+4 种基金Open Fund Project of Yunnan Provincial Key Laboratory of Highland Wetland Protection and Restoration and Ecological Services(202105AG070002)Provincial Innovation Team on Environmental Pollution and Food Safety and Human Health,Southwest Forestry University(2005AE160017)A Study of Terrestrial Animal Habitats in Li Ziping National Nature Reserve,Sichuan Province(2021ZD0125)The Construction Project of Key Disciplines with Advantages and Characteristics(Ecology)in Yunnan UniversitiesResearch Project of Key Laboratory of Soil Erosion and Control in Yunnan University。
文摘Two-factor analysis of variance and redundancy analysis were used to analyze the characte-ristics of soil organic carbon total nitrogen storage in garden land,forestland,grassland,farmland,and bare land in the Dachunhe watershed of Jinning District,Kunming City,Yunnan Province,China.The effects of the soil organic carbon,total nitrogen stratification ratio,soil physical and chemical factors on the storage characteristics of organic carbon and total nitrogen of different land-use types were analyzed.The results show that the rates of carbon and nitrogen stratification in soil from 0-20 cm and 40-60 cm of the same land-use types differed are statistically significant(P<0.05).The organic carbon and total nitrogen stratification ratio SR1 of garden land soil are 38.5%and 25.3%,respectively,which are higher than SR^(2).The soil organic carbon and total nitrogen stratification ratio SR^(2) of different land-use types are greater than SR1.There are statistically significant differences in the SR^(2) soil organic carbon and total nitrogen stratification ratios(P<0.05).Soil organic carbon and total nitrogen storage of diffe-rent land-use types gradually decrease with increasing soil depth,with the maximum soil organic carbon and total nitrogen storage in the 0-20 cm soil layer.Soil organic carbon and total nitrogen sto-rage at the same soil depth are significantly different(P<0.05).Soil organic carbon and total nitrogen storage in the garden land are greater than those in the other land-use types.Soil organic carbon and total nitrogen storage in 0-20 cm garden land are 4.96 and 3.19 times than those in bare land,respectively;soil organic carbon and total nitrogen storage are explained by 93.66%and 1.53%in redundancy analysis RDA1 and RDA2,respectively.All physicochemical factors except Available Phosphorus and pH are statistically significance with carbon and nitrogen storage(P<0.05).Soil cationic exchange capacity,Available Phosphorus,C/N ratio,and Moisture Content are positively correlated with organic carbon and total nitrogen storage.In contrast,soil Bulk Density is negatively correlated with organic carbon storage and total nitrogen storage.Available Phosphorus,C/N ratio,and Moisture Content are the main factors promoting soil organic carbon and total nitrogen accumulation.
基金Supported by National Key Basic Research Development Plan(973) Early Special Item(2008CB41720)Yunnan Application Basic Research Apparent Project (2009ZC083M)+1 种基金Yunnan Technological Plan Project (2008CA006)Apparent Fund Project of South West Forestry University (200804M)~~
文摘As the main external pollution source of lake,nitrogen and phosphorus from agricultural non-point source make a great contribution to the lake eutrophication pollution.Wetland lakefront zone which plays a key role in externally agricultural non-point source pollution is considered as the biggest barrier for controlling external pollution.In this research,the Jian lake plateau Zizania latifolia wetland lakefront zone was selected for agricultural non-point source pollutions control with the systematic field research,and the lakefront zone was approved to have an effective purification effect on nitrogen and phosphorus from Jinlong River; the theoretical mechanism of lakefront zone removing nutrient was also investigated.Z.latifolia wetland lakefront zone could remove nitrogen and phosphorus from Jinlong River and the removal ratio can reach 55.8-62.52% and 59.47-69.81% respectively.So,we can indicate that the Jian Lake plateau Z.latifolia wetland lakefront zone had a good effect on controlling agricultural non-point source pollution and protecting the environment.
基金Supported by Key Development and Research Project of Yunnan Provincial Development and Reform Commission(2012)
文摘Yunnan plateau characteristic agriculture is an essential force for increasing farmers' income and promoting prosperity of rural economy. The fundamental position of agriculture should be kept all the time. This paper analyzed practical basis and existing problems in development of Yunnan plateau characteristic agriculture. In line with these problems,it present ideas,main points and objectives of Yunnan plateau characteristic agriculture,and finally came up with recommendations for accelerating development of Yunnan plateau characteristic agriculture.
基金Supported by the State Council Leading Group Office of Poverty Alleviation and Development of China~~
文摘The policy of taking the targeted poverty alleviation measures has been the mission of the age in propelling the 13th Five-year Plan and building moderately prosperous society. A good poverty alleviation model is of significance for the goal. The research introduced a poverty-stricken county-Midu County, Dali Bai Au- tonomous Prefecture, analyzed the basic approaches and the main achievements of "the model of poverty alleviation and income growth by developing plateau-charac- terized agriculture", and proposed some suggestions to promoting and applying this model. The research provides references for plateau-characterized agricultural devel- opment and targeted poverty alleviation strategy.
基金funded by the National Natural Science Foundation of China (NSFC) (Grant No. 40965009)the Guizhou Provincial Meteorological Bureau Key Laboratory Programme (No. KF200906)
文摘Using the observed data from 184 stations over the Yunnan-Guizhou Plateau (YGP) from 1961 to 2005, the long-term trends in sunshine duration, cloud amount, dry visibility (Vd), dry extinction, and water vapor over the YGP are analyzed. The results show that 85% of the stations recorded shortening annual sunshine duration, with the decrease rates between -12.2 and -173.7 h/10yr. Results of Mann-Kendall tests indicate that, among the stations with decreasing sunshine duration, 63.7% of them experienced an abrupt change that started in the 1970s and peaked in the 1980s. This decreasing trend has reversed in the early years of the 21st century. The cloud cover and water vapor content in the mid and lower levels over the YGP had no obvious changes during the study period. The annual averages of Vd declined from 34 km in the 1960s to 27 km at present. The annual mean dry extinction coefficient trended upward, from 0.176 to 0.190, on the YGP from 1980 to 2005. Analyses of cloud cover, water vapor, atmospheric visibility, and dry extinction coefficient revealed that emitted tropospheric aerosols (including air pollutants) resulting from increased energy consumption over the YGP could be a major Factor influencing the reductions of sunshine duration and atmospheric visibility.
文摘The Cenozoic strata are well developed in the northwest of Yunnan Province, where the eastern boundary of Qing—Zang (Qinghai—Xizang) plateau is located. The rich geo\|records in the Cenozoic strata can help us to recapitulate the evolution history of Qing—Zang plateau.1\ The Cenozoic Strata Ninglang Formation (Paleocene—Middle Eocene) is composed of massively bedded conglomerate , mudstone in the lower part, purple thinly bedded—medium bedded fine quartz sandstone and sandy shale in the upper part, 600m thick. Lijiang Formation (Upper Eocene) and Jinsichang Formation (Oligocene): conglomerate, with a little sandstone in lower part, claystone, with a little conglomerate in the upper part. Lijiang Formation unconformably overlies on Ninglang Formation or even older strata, 1500~2000m thick. Shuanghe Formation (Miocene): thinly—massively bedded muddy siltstone, fine sandstone, marl, with several layers of coal. It unconformably overlies on Jinsichang Formation or even older strata, 108m thick. Sanying Formation (Pliocene): Claystone, siltstone, with a little lignite in the middle and upper part, conglomerate at the base, 110m thick, widely spread in the northwest of Yunnan.Sheshan Formation (early Pleistocene): pebbles, sands and clay layers. It unconformably overlies on the older strata, 100~187m thick.Heyunsi Formation (middle Pleistocene): poorly sorted and poorly rounded gravel and sands, 100~347m thick.Upper Pleistocene Series: glaciers—gravel, sands and clays; alluvial—sandy gravel layer(terraces); lacustrine—fine sand, silt and clay layer, 100 m thick.Holocene Series: lacustrine—sand, silt and clay layers; alluvial—sandy gravel layer (terraces), 50m thick.
基金Supported by Key Decision Advisory Program of Yunnan Provincial Development and Reform Commission
文摘Climatic characteristics of foreign low latitude plateau regions are firstly introduced.Then,experience and lessons of major foreign low latitude plateau countries in developing modern agriculture are analyzed,including Indian three agricultural revolutions and agricultural informationization development,application of agricultural biotechnology in Brazil,trade liberalization and economic de-agriculture of Mexico,and Argentina,Saudi Arabia and South Africa attaching great importance to developing modern agriculture relying on science and technology and paying close attention to resource conservation and environmental protection.Combining natural and social resource characteristics of Yunnan plateau agriculture,pertinent implications and recommendations for modern agricultural development in Yunnan are put forward.Specifically,these include strengthening agricultural sci-tech research and development,and extension and application;transforming agricultural development model;enhancing agricultural resource conservation and environmental protection;accelerating developing mountain organic ecological agriculture and autumn agriculture;reinforcing urban and rural integration to develop plateau characteristic agriculture on the basis of local actual conditions.
基金Supported by Research Project of Yunnan "Three Rural Issues" and New Rural Construction Research Base in 2016Youth Social Science Project of Yunnan Agricultural University(2015SK01)
文摘The development of agriculture with plateau characteristics is a market-oriented strategic choice,made by Yunnan Province,of agricultural economy with regional characteristics,on the basis of resources and location advantages,as well as geographical division of the national economy. The characteristic agribusiness is an important carrier for building a new agricultural management system with plateau characteristics,and also a key way to promote characteristic agricultural industrialization. In this paper,with 26 agribusinesses with plateau characteristics in Yunnan Province as samples,we establish the competitiveness evaluation system for the agribusiness with plateau characteristics,and use the operating data( 2012-2014) and AHP to calculate and the sample business competitiveness index and sort these businesses. Finally,we make a comprehensive analysis on the competitiveness of sample agribusinesses with plateau characteristics in Yunnan Province,in order to provide decision-making basis for promotion of the competitiveness of the agribusiness with plateau characteristics.