On January 10, 1998, an earthquake of ML=6.2 occurred in the border region between the Zhangbei County and Shangyi County of Hebei Province. This earthquake has been the most significant event occurred in the northern...On January 10, 1998, an earthquake of ML=6.2 occurred in the border region between the Zhangbei County and Shangyi County of Hebei Province. This earthquake has been the most significant event occurred in the northern China in the recent years. Historical seismicity in the Zhangbei-Shangyi region was very low. In the epicentral area no active fault capable of generating a moderate earthquake like this event was found. The earthquake locations of the main shock and its aftershocks of the Zhangbei-Shangyi earthquake sequence given by several agencies and authors were diverse and the resulted hypocentral distribution revealed no any dominant horizontal lineation. To study the seismogenic structure of the Zhangbei-Shangyi earthquake, in this paper the main shock and its aftershocks with ML3.0 of the Zhangbei-Shangyi earthquake sequence were relocated using the master event relative relocation algorithm. The relocated results show that the epicentral location of the main shock was 41.145癗, 114.462癊, which was located 4 km to the NE of the macro-epicenter of the main shock. The relocated focal depth of the main shock was 15 km. The hypocenters of the aftershocks distributed in a nearly vertical N20E-striking plane and its vicinity. The relocated results of the Zhangbei-Shangyi earthquake sequence clearly indicated that the seismogenic structure of this event was a nearly N-S- to NNE-SSW-striking fault with right-lateral and reverse slip, and that the occurrence of this event was associated with the horizontal and ENE-oriented compressive tectonic stress, which was compatible with the tectonic stress field in the northern China.展开更多
The seismic data obtained from the wide angle reflection and refraction profiles that pass through Zhangjiakou area of Hebei Province were interpreted. Some conclusions drawn from the result are as follows: (1) The ne...The seismic data obtained from the wide angle reflection and refraction profiles that pass through Zhangjiakou area of Hebei Province were interpreted. Some conclusions drawn from the result are as follows: (1) The nearly EW-trending Zhangbei-Chongli crustal fault zone and WNW-trending Zhangjiakou-Bohai Sea deep crustal fault zone meet in the Zhangbei earthquake (Ms = 6.2) area; (2) At the intersection, the two deep crustal fault zones that stretch to the Moho and the discontinuities of interfaces within the crust form the path for large area basalt eruption in Hannuoba; (3) In the earthquake area, the local velocity reversal in the middle-upper crust and abnormal low velocity zone in the lower crust imply that the magmatic activity there is still fairly violent; and (4) The recent activity of Zhangjiakou-Bohai Sea deep crustal fault zone may be the main cause of the Zhangbei earthquake.展开更多
This paper used the thermal infrared data of the satellite NOAA-AAVHRR of the north pat of North China (113°~119°E, 38°~42°N), and processed the remote sensing data through radiation adjustment, ge...This paper used the thermal infrared data of the satellite NOAA-AAVHRR of the north pat of North China (113°~119°E, 38°~42°N), and processed the remote sensing data through radiation adjustment, geometric adjust ment and so on by the software 'The Monitoring and Fast Process System of Earthquake Precursor Thermal Infra red Anomaly', inversed the each surface temperature. Some disturbances effect had been excluded, and thermal infrared temperature anomaly had been extracted by the picture difference method. The Zhangbei M_s=6.2 earth quake is used as the example in the paper, so that in the paper thermal infrared characteristics on time-space before earthquake and the relationship between the anomaly and the earthquake prediction have been summarized. Within more than ten days before the Zhangbei earthquake, the thermal infrared anomaly had emerged widely along Zhangjiakou-Bobal seismic belt, and the anomalous region seemed like a belt and it is also consistent with the tectonic background there; the anomaly expanded from the outside toward the earthquake focus, but the focus lay at the edge of the thermal infrared region. So it is possible to explore a new anomaly observation method for earthquake prediction by observing and studying the satellite thermal infrared anomaly before big earthquakes happen.展开更多
On January 10, 1998, at 11h50min Beijing Time (03h50min UTC), an earthquake of ML=6.2 occurred in the border region between the Zhangbei County and Shangyi County of Hebei Province. This earthquake is the most signifi...On January 10, 1998, at 11h50min Beijing Time (03h50min UTC), an earthquake of ML=6.2 occurred in the border region between the Zhangbei County and Shangyi County of Hebei Province. This earthquake is the most significant event to have occurred in northern China in the recent years. The earthquake-generating structure of this event was not clear due to no active fault capable of generating a moderate earthquake was found in the epicentral area, nor surface ruptures with any predominate orientation were observed, no distinct orientation of its aftershock distribution given by routine earthquake location was shown. To study the seismogenic structure of the Zhangbei- Shangyi earthquake, the main shock and its aftershocks with ML3.0 of the Zhangbei-Shangyi earthquake sequence were relocated by the authors of this paper in 2002 using the master event relative relocation technique. The relocated epicenter of the main shock was located at 41.145癗, 114.462癊, which was located 4 km to the NE of the macro-epicenter of this event. The relocated focal depth of the main shock was 15 km. Hypocenters of the aftershocks distributed in a nearly vertical plane striking 180~200 and its vicinity. The relocated results of the Zhangbei-Shangyi earthquake sequence clearly indicated that the seismogenic structure of this event was a NNE-SSW-striking fault with right-lateral and reverse slip. In this paper, a relocation of the Zhangbei-Shangyi earthquake sequence has been done using the double difference earthquake location algorithm (DD algorithm), and consistent results with that obtained by the master event technique were obtained. The relocated hypocenters of the main shock are located at 41.131癗, 114.456癊, which was located 2.5 km to the NE of the macro-epicenter of the main shock. The relocated focal depth of the main shock was 12.8 km. Hypocenters of the aftershocks also distributed in a nearly vertical N10E-striking plane and its vicinity. The relocated results using DD algorithm clearly indicated that the seismogenic structure of this event was a NNE-striking fault again.展开更多
The ProP waveform data obtained from a deep seismic sounding profile, which ran through Zhangbei seismic region, were processed by means of both seismic wave complexity coefficient and frequency spectrum analysis meth...The ProP waveform data obtained from a deep seismic sounding profile, which ran through Zhangbei seismic region, were processed by means of both seismic wave complexity coefficient and frequency spectrum analysis methods, and the complexity characteristics of crest-mantle boundary beneath the studied area and its adjacent region were determined. The results show that the place below epicenter can be taken as boundary, the northern side of which is Inner Mongolia axis with small complexity coefficient and the southern side of which is Huai'an basin with large complexity coefficient. The different spectrum patterns at the two sides of the epicenter were inferred from spectrum analysis. In the epicentral area, there have been multi-period magmatic eruptions since Meso-Cenozoic and craters exist at the surface. From the velocity imaging of middle and upper crust in Zhangbei seismic region it can be found that there are crustal low velocity bodies around the craters and also there are low velocity zones, which went into deep crust. It is suggested that the distinct zones of crust-mantle boundary complexity may be the margin, where the magma had intruded due to magma activity in Meso-Cenozoic. The southern side with large complexity coefficient is deep magmatic activity area and the northern side with small complexity coefficient is stable crust-mantle tectonics. The difference of crust-mantle complexity provides deep background for the development of strong earthquake.展开更多
Through analysis we found that some mesoscale anomalous regions (10 1~10 2 km) of meteorological parameters such as the special drought areas, unusual warm areas, the largest snowfall center, low pressure area toge...Through analysis we found that some mesoscale anomalous regions (10 1~10 2 km) of meteorological parameters such as the special drought areas, unusual warm areas, the largest snowfall center, low pressure area together with the epicenter area of M S=6.2 Zhangbei earthquake on January 10, 1998 are located at the same area, i.e. there appears the ″Five areas corresponding″ phenomenon. Meanwhile, three times of low pressure evolution are generated and develop in the earthquake area in five days after the occurrence of the earthquake. The abnormal variation of the lower limit of frozen soil layer shows indirectly that unusual warm in earthquake areas are related to the upward thermal conduction from the deeper layer of earth surface.展开更多
Crustal Deformation Monitoring Center, China Seismological Bureau, Tianjin 300180, China Crustal deformation in the northern part of North China associated with Zhangbei earthquake is analyzed using GPS data collected...Crustal Deformation Monitoring Center, China Seismological Bureau, Tianjin 300180, China Crustal deformation in the northern part of North China associated with Zhangbei earthquake is analyzed using GPS data collected during 1992, 1996 and 1999, precise re-leveling data collected during 1992, 1998 and 2000, and INSAR result (September 22, 1997~May 6, 1998). The results indicate: ① The vertical deformation is not remarkable since 1992. The vertical crustal deformation in the central and northern part of North China in recent 10 years is of inheritance. The scope of the significant deformation is 15km×15km with a magnitude of 250mm when the event occurred. ② The horizontal deformation is not remarkable in any unit of North China. ③ Before and after the event (1992~1996 and 1996~1999), there is kinematic change of horizontal motion between different units. The activity mode along Yinshan tectonic zone changed from relative static state to left-lateral strike slip; The dominant extensional movement along Shanxi rift zone changed to right-lateral strike slip; Yanshan tectonic zone changed from left-lateral strike-slip with extension to left-lateral strike slip; Yanshan-Hebei transitional zone formed before the event disappeared after the event. ④ The scale of the deformation is closely related to the physical property of media and geological structure environment. Further analysis indicates that ① Zhangbei earthquake does not mean that the earthquake activity begins to be strengthened in North China; ② The crustal movement is normal at present; ③ Next stronger earthquake in North China might be located in Yanshan tectonic zone, especially at its both ends, and Shanxi tectonic zone.展开更多
The regional seismotectonic environment for the Zhangbei- Shangyi earthquake is described, and in combination with the distribution of macroscopic seismic intensity, source mechanism solution, and interpretation of li...The regional seismotectonic environment for the Zhangbei- Shangyi earthquake is described, and in combination with the distribution of macroscopic seismic intensity, source mechanism solution, and interpretation of lineaments on satellite images, the seismogenic structure for the earthquake and possible seismogenic fault are discussed in this paper. It is suggested that the Zhangbei-Shangyi earthquake is a result of the latest movement along the northwestern termination of the Zhangjiakou-Penglai fault zone and we should pay serious attention to the future trend of seismic activity along this fault zone.展开更多
The study of deep-seated structure in the Zhangbei-Shangyi earthquake area and its surroundings indicates that in comparison with the Shanxi rift system, the North China rifted basin, the Yanshanian fold belt on both ...The study of deep-seated structure in the Zhangbei-Shangyi earthquake area and its surroundings indicates that in comparison with the Shanxi rift system, the North China rifted basin, the Yanshanian fold belt on both sides, and the Zhangjiakou-Penglai tectonic belt have lower resistivity, and a distinctly different velocity interface in the crust and depth distribution of Moho discontinuity. The Yanqing- Huai’lai basin bisects the Zhangjiakou-Penglai tectonic belt into two segments, the northwestern and the southeastern segments. The latest magnetotelluric sounding and investigation indicate that the electrical structure within the Zhangbei-Shangyi earthquake area is different to a certain degree from that in its surroundings. There exists a nearly NNW-trending structure in the crust. The main shock and most aftershocks occurred above the low-resistivity zone in the crust.展开更多
High-value subsurface fluid anomalies appeared in the northern part of North China region for more than two years before the Zhangbei-Shangyi earthquake. Some of the anomalies have appeared alternately and were correl...High-value subsurface fluid anomalies appeared in the northern part of North China region for more than two years before the Zhangbei-Shangyi earthquake. Some of the anomalies have appeared alternately and were correlated with moderate and moderately strong earthquakes in the region during the last year (1997). Typical short-term subsurface fluid anomalies have appeared in the area at 100 km ~ 200 km distance from the epicenter for two months before an earthquake. Tracing these anomalies during the last two years and repeatedly improving the knowledge of seismic regime, we have more successfully performed short-term and imminent earthquake prediction at half a month before its occurrence.展开更多
The coscismic deformation produced by 1998 earthquake (M8 = 6.2) in Zhangbei-Shangyi of northern China is measured by the differential synthetic aperture radar interferometry (D-InSAR) technique using the European Rem...The coscismic deformation produced by 1998 earthquake (M8 = 6.2) in Zhangbei-Shangyi of northern China is measured by the differential synthetic aperture radar interferometry (D-InSAR) technique using the European Remote Sensing satellite (ERS) SAR data. Interferograms are constructed from the ERS-1/2 SAR data by the three-pass method. The line-of-sight displacement map indicates that the deformation center of the earthquake is located at E114°20’, N40°57’, with the maximum uplift of 25 cm. The extent of the displacement is around 300 km2. The focal mechanism and earthquake-induced structures are analyzed based on the spatial distribution of the deformation. The results give new insights into the seismic mechanism study.展开更多
On 10 January, 1998 an earthquake of Ms=6.2 occurred in the Zhangbei-Shangyi region of North China. The surface seismic deformation was measured in the previous study using the 3 pass ERS-1/2 SAR differential inter-fe...On 10 January, 1998 an earthquake of Ms=6.2 occurred in the Zhangbei-Shangyi region of North China. The surface seismic deformation was measured in the previous study using the 3 pass ERS-1/2 SAR differential inter-ferometric technology (D-INSAR). In this note the focal mechanism of Zhangbei-Shangyi earthquake is estimated from the D-INSAR measurement of surface deformation based on a standard elastic dislocation model for seismic displacement. The inversion procedure is an iterative, linear least-squares algorithm. Through the relation between the focal parameters and displacement in the line of sight direc-tion measured in the radar interferogram, the optimum focal parameter set is derived. The results show that the seismic fault of Zhangbei-Shangyi earthquake is a thrust fault dip-ping SW with a large right-lateral displacement component. The strike and dip are 95°and 30°respectively on a fault patch of 12 km long by 14 km wide. Its hypocenter is located at N40°58’, E114°21’, and 7.5 km in depth.展开更多
基金The Project Mechanism and Prediction of Continental Strong Earthquakes Ministry of Science and Technology Peoples Republic of China (G19980407/95-13-02-04).
文摘On January 10, 1998, an earthquake of ML=6.2 occurred in the border region between the Zhangbei County and Shangyi County of Hebei Province. This earthquake has been the most significant event occurred in the northern China in the recent years. Historical seismicity in the Zhangbei-Shangyi region was very low. In the epicentral area no active fault capable of generating a moderate earthquake like this event was found. The earthquake locations of the main shock and its aftershocks of the Zhangbei-Shangyi earthquake sequence given by several agencies and authors were diverse and the resulted hypocentral distribution revealed no any dominant horizontal lineation. To study the seismogenic structure of the Zhangbei-Shangyi earthquake, in this paper the main shock and its aftershocks with ML3.0 of the Zhangbei-Shangyi earthquake sequence were relocated using the master event relative relocation algorithm. The relocated results show that the epicentral location of the main shock was 41.145癗, 114.462癊, which was located 4 km to the NE of the macro-epicenter of the main shock. The relocated focal depth of the main shock was 15 km. The hypocenters of the aftershocks distributed in a nearly vertical N20E-striking plane and its vicinity. The relocated results of the Zhangbei-Shangyi earthquake sequence clearly indicated that the seismogenic structure of this event was a nearly N-S- to NNE-SSW-striking fault with right-lateral and reverse slip, and that the occurrence of this event was associated with the horizontal and ENE-oriented compressive tectonic stress, which was compatible with the tectonic stress field in the northern China.
基金This project was sponsored by the State Science and Technology Commission of China (No. 85907020301)the United Earthquake Science Foundation of China (No. 196122). Contribution No.RCEG98003Research Center of Exploration Geophysics, China Seismologica
文摘The seismic data obtained from the wide angle reflection and refraction profiles that pass through Zhangjiakou area of Hebei Province were interpreted. Some conclusions drawn from the result are as follows: (1) The nearly EW-trending Zhangbei-Chongli crustal fault zone and WNW-trending Zhangjiakou-Bohai Sea deep crustal fault zone meet in the Zhangbei earthquake (Ms = 6.2) area; (2) At the intersection, the two deep crustal fault zones that stretch to the Moho and the discontinuities of interfaces within the crust form the path for large area basalt eruption in Hannuoba; (3) In the earthquake area, the local velocity reversal in the middle-upper crust and abnormal low velocity zone in the lower crust imply that the magmatic activity there is still fairly violent; and (4) The recent activity of Zhangjiakou-Bohai Sea deep crustal fault zone may be the main cause of the Zhangbei earthquake.
文摘This paper used the thermal infrared data of the satellite NOAA-AAVHRR of the north pat of North China (113°~119°E, 38°~42°N), and processed the remote sensing data through radiation adjustment, geometric adjust ment and so on by the software 'The Monitoring and Fast Process System of Earthquake Precursor Thermal Infra red Anomaly', inversed the each surface temperature. Some disturbances effect had been excluded, and thermal infrared temperature anomaly had been extracted by the picture difference method. The Zhangbei M_s=6.2 earth quake is used as the example in the paper, so that in the paper thermal infrared characteristics on time-space before earthquake and the relationship between the anomaly and the earthquake prediction have been summarized. Within more than ten days before the Zhangbei earthquake, the thermal infrared anomaly had emerged widely along Zhangjiakou-Bobal seismic belt, and the anomalous region seemed like a belt and it is also consistent with the tectonic background there; the anomaly expanded from the outside toward the earthquake focus, but the focus lay at the edge of the thermal infrared region. So it is possible to explore a new anomaly observation method for earthquake prediction by observing and studying the satellite thermal infrared anomaly before big earthquakes happen.
文摘On January 10, 1998, at 11h50min Beijing Time (03h50min UTC), an earthquake of ML=6.2 occurred in the border region between the Zhangbei County and Shangyi County of Hebei Province. This earthquake is the most significant event to have occurred in northern China in the recent years. The earthquake-generating structure of this event was not clear due to no active fault capable of generating a moderate earthquake was found in the epicentral area, nor surface ruptures with any predominate orientation were observed, no distinct orientation of its aftershock distribution given by routine earthquake location was shown. To study the seismogenic structure of the Zhangbei- Shangyi earthquake, the main shock and its aftershocks with ML3.0 of the Zhangbei-Shangyi earthquake sequence were relocated by the authors of this paper in 2002 using the master event relative relocation technique. The relocated epicenter of the main shock was located at 41.145癗, 114.462癊, which was located 4 km to the NE of the macro-epicenter of this event. The relocated focal depth of the main shock was 15 km. Hypocenters of the aftershocks distributed in a nearly vertical plane striking 180~200 and its vicinity. The relocated results of the Zhangbei-Shangyi earthquake sequence clearly indicated that the seismogenic structure of this event was a NNE-SSW-striking fault with right-lateral and reverse slip. In this paper, a relocation of the Zhangbei-Shangyi earthquake sequence has been done using the double difference earthquake location algorithm (DD algorithm), and consistent results with that obtained by the master event technique were obtained. The relocated hypocenters of the main shock are located at 41.131癗, 114.456癊, which was located 2.5 km to the NE of the macro-epicenter of the main shock. The relocated focal depth of the main shock was 12.8 km. Hypocenters of the aftershocks also distributed in a nearly vertical N10E-striking plane and its vicinity. The relocated results using DD algorithm clearly indicated that the seismogenic structure of this event was a NNE-striking fault again.
基金Joint Seismological Science Foundation of China (104027 and 102025).
文摘The ProP waveform data obtained from a deep seismic sounding profile, which ran through Zhangbei seismic region, were processed by means of both seismic wave complexity coefficient and frequency spectrum analysis methods, and the complexity characteristics of crest-mantle boundary beneath the studied area and its adjacent region were determined. The results show that the place below epicenter can be taken as boundary, the northern side of which is Inner Mongolia axis with small complexity coefficient and the southern side of which is Huai'an basin with large complexity coefficient. The different spectrum patterns at the two sides of the epicenter were inferred from spectrum analysis. In the epicentral area, there have been multi-period magmatic eruptions since Meso-Cenozoic and craters exist at the surface. From the velocity imaging of middle and upper crust in Zhangbei seismic region it can be found that there are crustal low velocity bodies around the craters and also there are low velocity zones, which went into deep crust. It is suggested that the distinct zones of crust-mantle boundary complexity may be the margin, where the magma had intruded due to magma activity in Meso-Cenozoic. The southern side with large complexity coefficient is deep magmatic activity area and the northern side with small complexity coefficient is stable crust-mantle tectonics. The difference of crust-mantle complexity provides deep background for the development of strong earthquake.
文摘Through analysis we found that some mesoscale anomalous regions (10 1~10 2 km) of meteorological parameters such as the special drought areas, unusual warm areas, the largest snowfall center, low pressure area together with the epicenter area of M S=6.2 Zhangbei earthquake on January 10, 1998 are located at the same area, i.e. there appears the ″Five areas corresponding″ phenomenon. Meanwhile, three times of low pressure evolution are generated and develop in the earthquake area in five days after the occurrence of the earthquake. The abnormal variation of the lower limit of frozen soil layer shows indirectly that unusual warm in earthquake areas are related to the upward thermal conduction from the deeper layer of earth surface.
文摘Crustal Deformation Monitoring Center, China Seismological Bureau, Tianjin 300180, China Crustal deformation in the northern part of North China associated with Zhangbei earthquake is analyzed using GPS data collected during 1992, 1996 and 1999, precise re-leveling data collected during 1992, 1998 and 2000, and INSAR result (September 22, 1997~May 6, 1998). The results indicate: ① The vertical deformation is not remarkable since 1992. The vertical crustal deformation in the central and northern part of North China in recent 10 years is of inheritance. The scope of the significant deformation is 15km×15km with a magnitude of 250mm when the event occurred. ② The horizontal deformation is not remarkable in any unit of North China. ③ Before and after the event (1992~1996 and 1996~1999), there is kinematic change of horizontal motion between different units. The activity mode along Yinshan tectonic zone changed from relative static state to left-lateral strike slip; The dominant extensional movement along Shanxi rift zone changed to right-lateral strike slip; Yanshan tectonic zone changed from left-lateral strike-slip with extension to left-lateral strike slip; Yanshan-Hebei transitional zone formed before the event disappeared after the event. ④ The scale of the deformation is closely related to the physical property of media and geological structure environment. Further analysis indicates that ① Zhangbei earthquake does not mean that the earthquake activity begins to be strengthened in North China; ② The crustal movement is normal at present; ③ Next stronger earthquake in North China might be located in Yanshan tectonic zone, especially at its both ends, and Shanxi tectonic zone.
基金This research was a key project supported by the China Seismological Bureau in the Ninth Five-Year Plan of National Economic Construction (95040802) Institute of Geology, China Seismological Bureau, contribution No. 98B0015.
文摘The regional seismotectonic environment for the Zhangbei- Shangyi earthquake is described, and in combination with the distribution of macroscopic seismic intensity, source mechanism solution, and interpretation of lineaments on satellite images, the seismogenic structure for the earthquake and possible seismogenic fault are discussed in this paper. It is suggested that the Zhangbei-Shangyi earthquake is a result of the latest movement along the northwestern termination of the Zhangjiakou-Penglai fault zone and we should pay serious attention to the future trend of seismic activity along this fault zone.
基金The research is supported by the China Seismological Bureau as a key project during the Eighth Five-Year Plan of NEC (859070203) and the National Natural Science Foundation grant No.49374205. Contribution No.98B0017, Institute of Geology, CSB.
文摘The study of deep-seated structure in the Zhangbei-Shangyi earthquake area and its surroundings indicates that in comparison with the Shanxi rift system, the North China rifted basin, the Yanshanian fold belt on both sides, and the Zhangjiakou-Penglai tectonic belt have lower resistivity, and a distinctly different velocity interface in the crust and depth distribution of Moho discontinuity. The Yanqing- Huai’lai basin bisects the Zhangjiakou-Penglai tectonic belt into two segments, the northwestern and the southeastern segments. The latest magnetotelluric sounding and investigation indicate that the electrical structure within the Zhangbei-Shangyi earthquake area is different to a certain degree from that in its surroundings. There exists a nearly NNW-trending structure in the crust. The main shock and most aftershocks occurred above the low-resistivity zone in the crust.
文摘High-value subsurface fluid anomalies appeared in the northern part of North China region for more than two years before the Zhangbei-Shangyi earthquake. Some of the anomalies have appeared alternately and were correlated with moderate and moderately strong earthquakes in the region during the last year (1997). Typical short-term subsurface fluid anomalies have appeared in the area at 100 km ~ 200 km distance from the epicenter for two months before an earthquake. Tracing these anomalies during the last two years and repeatedly improving the knowledge of seismic regime, we have more successfully performed short-term and imminent earthquake prediction at half a month before its occurrence.
基金the National Key Basic Research Program (Grant No. G1998040703) and the CAS Knowledge Innovation Key Project. The ERS-1/2 SAR data were provided by ESA for the ERS Project (ERS A03-374).
文摘The coscismic deformation produced by 1998 earthquake (M8 = 6.2) in Zhangbei-Shangyi of northern China is measured by the differential synthetic aperture radar interferometry (D-InSAR) technique using the European Remote Sensing satellite (ERS) SAR data. Interferograms are constructed from the ERS-1/2 SAR data by the three-pass method. The line-of-sight displacement map indicates that the deformation center of the earthquake is located at E114°20’, N40°57’, with the maximum uplift of 25 cm. The extent of the displacement is around 300 km2. The focal mechanism and earthquake-induced structures are analyzed based on the spatial distribution of the deformation. The results give new insights into the seismic mechanism study.
基金Thiswork was supported by the National Key Basic Research Program (Grant No. G1998040703) the Knowledge Innovation Key Project of the CAS (Grant No. KZCX2-309) The ERS-1/2 SAR data were provided by ESA for the ERS project (ERS A03-374).
文摘On 10 January, 1998 an earthquake of Ms=6.2 occurred in the Zhangbei-Shangyi region of North China. The surface seismic deformation was measured in the previous study using the 3 pass ERS-1/2 SAR differential inter-ferometric technology (D-INSAR). In this note the focal mechanism of Zhangbei-Shangyi earthquake is estimated from the D-INSAR measurement of surface deformation based on a standard elastic dislocation model for seismic displacement. The inversion procedure is an iterative, linear least-squares algorithm. Through the relation between the focal parameters and displacement in the line of sight direc-tion measured in the radar interferogram, the optimum focal parameter set is derived. The results show that the seismic fault of Zhangbei-Shangyi earthquake is a thrust fault dip-ping SW with a large right-lateral displacement component. The strike and dip are 95°and 30°respectively on a fault patch of 12 km long by 14 km wide. Its hypocenter is located at N40°58’, E114°21’, and 7.5 km in depth.