期刊文献+
共找到1,175篇文章
< 1 2 59 >
每页显示 20 50 100
The etching strategy of zinc anode to enable high performance zinc-ion batteries
1
作者 Xueqing Fu Gaopeng Li +4 位作者 Xinlu Wang Jinxian Wang Wensheng Yu Xiangting Dong Dongtao Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期125-143,I0004,共20页
Zinc-ion batteries(ZIBs)are considered to be one of the most promising candidates to replace lithium-ion batteries(LIBs)due to the high theoretical capacity,low cost and intrinsic safety.However,zinc dendrites,hydroge... Zinc-ion batteries(ZIBs)are considered to be one of the most promising candidates to replace lithium-ion batteries(LIBs)due to the high theoretical capacity,low cost and intrinsic safety.However,zinc dendrites,hydrogen evolution reaction,surface passivation and other side reactions will inevitably occur during the charging and discharging process of Zn anode,which will seriously affect the cycle stability of the battery and hinder its practical application.The etching strategy of Zn anode has attracted wide attention because of its simple operation and broad commercial prospects,and the etched Zn anode can effectively improve its electrochemical performance.However,there is no comprehensive review of the etching strategy of Zn anode.This review first summarizes the challenges faced by Zn anode,then puts forward the etching mechanisms and properties of acid,salt and other etchants.Finally,based on the above discussion,the challenges and opportunities of Zn anode etching strategy are proposed. 展开更多
关键词 zinc-ion batteries Zn anode ETCHING 3D structures Dendrite-free
下载PDF
An in-situ self-etching enabled high-power electrode for aqueous zinc-ion batteries
2
作者 Shuang Hou Dingtao Ma +5 位作者 Yanyi Wang Kefeng Ouyang Sicheng Shen Hongwei Mi Lingzhi Zhao Peixin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期399-408,I0009,共11页
Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries(AZIBs).In this report,we propose a novel in-situ self-etching strategy to unlock the Pal... Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries(AZIBs).In this report,we propose a novel in-situ self-etching strategy to unlock the Palm tree-like vanadium oxide/carbon nanofiber membrane(P-VO/C)as a robust freestanding electrode.Comprehensive investigations including the finite element simulation,in-situ X-ray diffraction,and in-situ electrochemical impedance spectroscopy disclosed it an electrochemically induced phase transformation mechanism from VO to layered Zn_(x)V_(2)O_5·nH_(2)O,as well as superior storage kinetics with ultrahigh pseudocapacitive contribution.As demonstrated,such electrode can remain a specific capacity of 285 mA h g^(-1)after 100 cycles at 1 A g^(-1),144.4 mA h g^(-1)after 1500 cycles at 30 A g^(-1),and even 97 mA h g^(-1)after 3000 cycles at 60 A g^(-1),respectively.Unexpectedly,an impressive power density of 78.9 kW kg^(-1)at the super-high current density of 100 A g^(-1)also can be achieved.Such design concept of in-situ self-etching free-standing electrode can provide a brand-new insight into extending the pseudocapacitive storage limit,so as to promote the development of high-power energy storage devices including but not limited to AZIBs. 展开更多
关键词 In-situ self-etching Free-standing electrode Pseudocapacitive storage HIGH-POWER zinc-ion batteries
下载PDF
Stabilizing zinc anode using zeolite imidazole framework functionalized separator for durable aqueous zinc-ion batteries
3
作者 Weisong Zhang Xinyan Zhu +8 位作者 Ling Kang Ziyu Peng Jing Zhu Liang Pan Lei Dai Shude Liu Ling Wang Yongguang Liu Zhangxing He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期23-31,I0003,共10页
Aqueous zinc-ion batteries(AZIBs) hold great promise as a viable alternative to lithium-ion batteries owing to their high energy density and environmental friendliness.However,AZIBs are consistently plagued by the for... Aqueous zinc-ion batteries(AZIBs) hold great promise as a viable alternative to lithium-ion batteries owing to their high energy density and environmental friendliness.However,AZIBs are consistently plagued by the formation of zinc dendrites and concurrent side reactions,which significantly diminish their overall service life,In this study,the glass fiber separator(GF) is modified using zeolite imidazole salt framework-8(ZIF-8),enabling the development of efficient AZIBs.ZIF-8,which is abundant in nitrogen content,efficiently regulates the desolvation of [Zn(H_(2)O)_(6)]^(2+) to inhibit hydrogen production.Moreover,it possesses abundant nanochannels that facilitate the uniform deposition of Zn~(2+) via a localized action,thereby hindering the formation of dendrites.The insulating properties of ZIF-8 help prevent Zn^(2+) and water from trapping electron reduction at the layer surface,which reduces corrosion of the zinc anode.Consequently,ZIF-8-GF achieves the even transport of Zn^(2+) and regulates the homogeneous deposition along the Zn(002) crystal surface,thus significantly enhancing the electrochemical performance of the AZIBs,In particular,the Zn|Zn symmetric cell with the ZIF-8-GF separator delivers a stable cycle life at0.5 mA cm^(-2) of 2300 h.The Zn|ZIF-8-GF|MnO_(2) cell exhibits reduced voltage polarization while maintaining a capacity retention rate(93.4%) after 1200 cycles at 1.2 A g^(-1) The unique design of the modified diaphragm provides a new approach to realizing high-performance AZIBs. 展开更多
关键词 Aqueous zinc-ion batteries Separators modifications ZIF-8 Zn deposition Dendrite-free
下载PDF
Dual-ion carrier storage through Mg^(2+) addition for high-energy and long-life zinc-ion hybrid capacitor
4
作者 Junjie Zhang Xiang Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期179-185,共7页
Cation additives can efficiently enhance the total electrochemical capabilities of zinc-ion hybrid capacitors (ZHCs).However their energy storage mechanisms in zinc-based systems are still under debate.Herein,we modul... Cation additives can efficiently enhance the total electrochemical capabilities of zinc-ion hybrid capacitors (ZHCs).However their energy storage mechanisms in zinc-based systems are still under debate.Herein,we modulate the electrolyte and achieve dual-ion storage by adding magnesium ions.And we assemble several Zn//activated carbon devices with different electrolyte concentrations and investigate their electrochemical reaction dynamic behaviors.The zinc-ion capacitor with Mg^(2+)mixed solution delivers 82 mAh·g^(-1)capacity at 1 A·g^(-1) and maintains 91%of the original capacitance after 10000 cycling.It is superior to the other assembled zinc-ion devices in single-component electrolytes.The finding demonstrates that the double-ion storage mechanism enables the superior rate performance and long cycle lifetime of ZHCs. 展开更多
关键词 zinc-ion hybrid capacitor MgSO_(4) ELECTROLYTE rate performance storage mechanism
下载PDF
Stable anode-free zinc-ion batteries enabled by alloy network-modulated zinc deposition interface 被引量:1
5
作者 Shiyin Xie Yang Li Liubing Dong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期32-40,I0002,共10页
Newly-proposed anode-free zinc-ion batteries(ZIBs)are promising to remarkably enhance the energy density of ZIBs,but are restricted by the unfavorable zinc deposition interface that causes poor cycling stability.Herei... Newly-proposed anode-free zinc-ion batteries(ZIBs)are promising to remarkably enhance the energy density of ZIBs,but are restricted by the unfavorable zinc deposition interface that causes poor cycling stability.Herein,we report a Cu-Zn alloy network-modulated zinc deposition interface to achieve stable anode-free ZIBs.The alloy network can not only stabilize the zinc deposition interface by suppressing 2D diffusion and corrosion reactions but also enhance zinc plating/stripping kinetics by accelerating zinc desolvation and nucleation processes.Consequently,the alloy network-modulated zinc deposition interface realizes high coulombic efficiency of 99.2%and high stability.As proof,Zn//Zn symmetric cells with the alloy network-modulated zinc deposition interface present long operation lifetimes of 1900 h at 1 m A/cm^(2)and 1200 h at 5 m A/cm^(2),significantly superior to Zn//Zn symmetric cells with unmodified zinc deposition interface(whose operation lifetime is shorter than 50 h),and meanwhile,Zn3V3O8cathodebased ZIBs with the alloy network-modified zinc anodes show notably enhanced rate capability and cycling performance than ZIBs with bare zinc anodes.As expected,the alloy network-modulated zinc deposition interface enables anode-free ZIBs with Zn3V3O8cathodes to deliver superior cycling stability,better than most currently-reported anode-free ZIBs.This work provides new thinking in constructing high-performance anode-free ZIBs and promotes the development of ZIBs. 展开更多
关键词 zinc-ion battery Zinc anode Zinc deposition interface Anode-free zinc-ion battery Cu-Zn alloy network
下载PDF
Trace Amounts of Triple-Functional Additives Enable Reversible Aqueous Zinc-Ion Batteries from a Comprehensive Perspective 被引量:3
6
作者 Ruwei Chen Wei Zhang +12 位作者 Quanbo Huang Chaohong Guan Wei Zong Yuhang Dai Zijuan Du Zhenyu Zhang Jianwei Li Fei Guo Xuan Gao Haobo Dong Jiexin Zhu Xiaohui Wang Guanjie He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第6期143-154,共12页
Although their cost-effectiveness and intrinsic safety,aqueous zinc-ion batteries suffer from notorious side reactions including hydrogen evolution reaction,Zn corrosion and passivation,and Zn dendrite formation on th... Although their cost-effectiveness and intrinsic safety,aqueous zinc-ion batteries suffer from notorious side reactions including hydrogen evolution reaction,Zn corrosion and passivation,and Zn dendrite formation on the anode.Despite numerous strategies to alleviate these side reactions have been demonstrated,they can only provide limited performance improvement from a single aspect.Herein,a triple-functional additive with trace amounts,ammonium hydroxide,was demonstrated to comprehensively protect zinc anodes.The results show that the shift of electrolyte pH from 4.1 to 5.2 lowers the HER potential and encourages the in situ formation of a uniform ZHS-based solid electrolyte interphase on Zn anodes.Moreover,cationic NH^(4+)can preferentially adsorb on the Zn anode surface to shield the“tip effect”and homogenize the electric field.Benefitting from this comprehensive protection,dendrite-free Zn deposition and highly reversible Zn plating/stripping behaviors were realized.Besides,improved electrochemical performances can also be achieved in Zn//MnO_(2)full cells by taking the advantages of this triple-functional additive.This work provides a new strategy for stabilizing Zn anodes from a comprehensive perspective. 展开更多
关键词 Aqueous zinc-ion battery Cationic shielding effect Solid electrolyte interphase pH value Triple-functional additive
下载PDF
Upcycling of phosphogypsum waste for efficient zinc-ion batteries 被引量:1
7
作者 Huanwen Wang Can Luo +9 位作者 Yinyin Qian Caihong Yang Xiaojun Shi Yansheng Gong Rui Wang Beibei He Jun Jin Aidong Tang Edison Huixiang Ang Huaming Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期157-166,I0006,共11页
Zinc metal is a promising anode material for next-generation aqueous batteries,but its practical application is limited by the formation of zinc dendrite.To prevent zinc dendrite growth,various Zn^(2+)-conducting but ... Zinc metal is a promising anode material for next-generation aqueous batteries,but its practical application is limited by the formation of zinc dendrite.To prevent zinc dendrite growth,various Zn^(2+)-conducting but water-isolating solid-electrolyte interphase(SEI)films have been developed,however,the required high-purity chemical materials are extremely expensive.In this work,phosphogypsum(PG),an industrial byproduct produced from the phosphoric acid industry,is employed as a multifunctional protective layer to navigate uniform zinc deposition.Theoretical and experimental results demonstrate that PG-derived CaSO_(4)2H_(2)O can act as an artificial SEI layer to provide fast channels for Zn^(2+)transport.Moreover,CaSO_(4)2H_(2)O could release calcium ions(Ca^(2+))due to its relatively high Kspvalue,which have a higher binding energy than that of Zn^(2+)on the Zn surface,thus preferentially adsorbing to the tips of the protuberances to force zinc ions to nucleate at inert region.As a result,the Zn@PG anode achieves a high Coulombic efficiency of 99.5%during 500 cycles and long-time stability over 1000 hours at 1 m A cm^(-2).Our findings will not only construct a low-cost artificial SEI film for practical metal batteries,but also achieve a high-value utilization of phosphogypsum waste. 展开更多
关键词 Upcycling Phosphogypsum waste zinc-ion battery Solid-electrolyte-interface Protection layer
下载PDF
Crystal plane induced in-situ electrochemical activation of manganese-based cathode enable long-term aqueous zinc-ion batteries 被引量:1
8
作者 Yuxin Gao Jiang Zhou +6 位作者 Liping Qin Zhenming Xu Zhexuan Liu Liangbing Wang Xinxin Cao Guozhao Fang Shuquan Liang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第5期1429-1436,共8页
Rapid capacity decay and sluggish reaction kinetics are major barriers hindering the applications of manganese-based cathode materials for aqueous zinc-ion batteries.Herein,the effects of crystal plane on the in-situ ... Rapid capacity decay and sluggish reaction kinetics are major barriers hindering the applications of manganese-based cathode materials for aqueous zinc-ion batteries.Herein,the effects of crystal plane on the in-situ transformation behavior and electrochemical performance of manganese-based cathode is discussed.A comprehensive discussion manifests that the exposed(100)crystal plane is beneficial to the phase transformation from tunnel-structured MnO_(2) to layer-structured ZnMn_(3)O_(7)·3H_(2)O,which plays a critical role for the high reactivity,high capacity,fast diffusion kinetics and long cycling stability.Additionally,a two-stage zinc storage mechanism can be demonstrated,involving continuous activation reaction and phase transition reaction.As expected,it exhibits a high capacity of 275 mAh g^(-1)at 100 mA g^(-1),a superior durability over 1000 cycles and good rate capability.This study may open new windows toward developing advanced cathodes for ZIBs,and facilitate the applications of ZIBs in large-scale energy storage system. 展开更多
关键词 Crystal plane Electrochemical activation Phase transition reaction Cycling stability zinc-ion batteries
下载PDF
Rational construction of Ag@MIL-88B(V)-derived hierarchical porous Ag-V_(2)O_(5) heterostructures with enhanced diffusion kinetics and cycling stability for aqueous zinc-ion batteries 被引量:1
9
作者 Yibo Zhang Zhihua Li +3 位作者 Liangjun Gong Xuyu Wang Peng Hu Jun Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期561-571,I0015,共12页
With the advantages of the multiple oxidation states and highly open crystal structures,vanadium-based composites have been considered as the promising cathode materials for aqueous zinc-ion batteries(ZIBs).However,th... With the advantages of the multiple oxidation states and highly open crystal structures,vanadium-based composites have been considered as the promising cathode materials for aqueous zinc-ion batteries(ZIBs).However,the inherent inferior electrical conductivity,low specific surface area,and sluggish Zn^(2+)diffusion kinetics of the traditional vanadium-based oxides have greatly impeded their development.Herein,a novel hierarchical porous spindle-shaped Ag-V_(2)O_(5) with unique heterostructures was rationally designed via a simple MOF-assisted synthetic method and applied as stable cathode for aqueous ZIBs.The high specific surface area and hierarchically porous superstructures endowed Ag-V_(2)O_(5) with sufficient electrochemical active sites and shortened the diffusion pathways of Zn^(2+),which was beneficial to accelerate the reversible transport of Zn^(2+)and deliver a high specific capacity(426 mA h g^(-1) at 0.1 A g^(-1) and 96.5%capacity retention after 100 cycles).Meanwhile,the self-built-in electric fields at the heterointerface of Ag-V_(2)O_(5) electrode could strengthen the synergistic coupling interaction between Ag and V_(2)O_(5),which can effectively enhance the electric conductivity and maintain the structural integrity,resulting in superb rate capability(326.1 mA h g^(-1) at 5.0 A g^(-1))and remarkable cycling stability(89.7%capacity retention after 2000 cycles at 5.0 A g^(-1)).Moreover,the reversible Zn^(2+)storage mechanism was further investigated and elucidated by kinetics analysis and DFT calculations. 展开更多
关键词 Aqueous zinc-ion batteries Metal-organic frameworks V_(2)O_(5) HETEROSTRUCTURES Nano silver
下载PDF
Cs-Induced Phase Transformation of Vanadium Oxide for High-Performance Zinc-Ion Batteries 被引量:1
10
作者 Gan Qu Kai Guo +4 位作者 Weijie Chen Yu Du Ye Wang Bingbing Tian Jianan Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期265-272,共8页
Rechargeable aqueous zinc-ion batteries are promising candidate for gridscale energy storage.However,the development of zinc-ion batteries has been plagued by the lack of cathode materials with high specific capacity ... Rechargeable aqueous zinc-ion batteries are promising candidate for gridscale energy storage.However,the development of zinc-ion batteries has been plagued by the lack of cathode materials with high specific capacity and superior lifespan.Herein,hexagonal Cs_(0.3)V_(2)O_(5)cathode is fabricated and investigated in zinc-ion batteries.Compared with the traditional vanadium oxides,the introduction of Cs changes the periodic atomic arrangements,which not only stabilizes the open framework structure but also facilitates the Zn^(2+)diffusion with a lower migration energy barrier.Consequently,high specific capacity of 543.8 mA h g^(-1)at 0.1 A g^(-1)is achieved,which surpasses most of reported cathode materials in zinc-ion batteries.The excellent cycle life is achieved over 1000 cycles with about 87.8%capacity retention at 2 A g^(-1).Furthermore,the morphological evolution and energy storage mechanisms are also revealed via a series of techniques.This work opens up a phase engineering strategy to fabricate the hexagonal vanadium oxide and elucidate the application of phase-dependent cathodes in zinc-ion batteries. 展开更多
关键词 cathode materials phase engineering vanadium oxide zinc-ion batteries
下载PDF
Interface challenges and optimization strategies for aqueous zinc-ion batteries
11
作者 Hanwen Liu Qianqin Zhou +4 位作者 Qingbing Xia Yaojie Lei Xiang Long Huang Mike Tebyetekerwa Xiu Song Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期642-659,I0016,共19页
Aqueous zinc-ion batteries have advantages over lithium-ion batteries,such as low cost,and good safety.However,their development is currently facing several challenges.One of the main critical challenges is their poor... Aqueous zinc-ion batteries have advantages over lithium-ion batteries,such as low cost,and good safety.However,their development is currently facing several challenges.One of the main critical challenges is their poor electrode–electrolyte interface.Addressing this requires understanding the physics and chemistry at the electrode–electrolyte interface,including the cathode-electrolyte interface and anodeelectrolyte interface.This review first identifies and analyses the interfacial challenges of aqueous zincion batteries.Then,it discusses the design strategies for addressing the defined interfacial issues from the perspectives of electrolyte optimization,electrode modification,and separator improvement.Finally,it provides corrective recommendations and strategies for the rational design of electrode–electrolyte interface in aqueous zinc-ion batteries towards their high-performance and reliable energy storage. 展开更多
关键词 Aqueous zinc-ion battery INTERPHASE SEI ELECTROLYTE Cathode ANODE
下载PDF
Chemical surface tuning of zinc metal anode toward stable,dendrite-less aqueous zinc-ion batteries
12
作者 Pranav Kulkarni Sun-Sik Kim Hyun Young Jung 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期1-8,I0001,共9页
The commercialization of Zn batteries is confronted with urgent challenges in the metal anode,such as dendrite formation,capacity loss,and cracking or dissolution.Here,surface interfacial engineering of the Zn anode i... The commercialization of Zn batteries is confronted with urgent challenges in the metal anode,such as dendrite formation,capacity loss,and cracking or dissolution.Here,surface interfacial engineering of the Zn anode is introduced for achieving safety and dendritic-free cycling for high-performance aqueous Zn batteries through a simple but highly effective chemical etching-substitution method.The chemical modification induces a rough peak-valley surface with a thin fluorine-rich interfacial layer on the Zn anode surface,which regulates the growth orientation via guiding uniform Zn plating/stripping,significantly enhances accessibility to aqueous electrolytes and improves wettability by reducing surface energy.As a result,such a synergetic surface effect enables uniform Zn plating/stripping with low polarization of 29 m V at a current density of 0.5 m A cm^(-2) with stable cyclic performance up to 1000 h.Further,a full cell composed of a fluorine-substituted Zn anode coupled with aβ-MnO_(2)or Ba-V_(6)O_(13)cathode demonstrates improved capacity retention to 1000 cycles compared to the pristine-Zn cells.The proposed valley deposition model provides the practical direction of surface-modified interfacial chemistries for improving the electrochemical properties of multivalent metal anodes via surface tuning. 展开更多
关键词 Dendrite free Peak-Valley surface zinc-ion batteries Surface modification Fluorinated interface
下载PDF
Engineered nitrogen doping on VO_(2)(B)enables fast and reversible zinc-ion storage capability for aqueous zinc-ion batteries
13
作者 Xin Gu Juntao Wang +7 位作者 Xiaobin Zhao Xin Jin Yuzhe Jiang Pengcheng Dai Nana Wang Zhongchao Bai Mengdi Zhang Mingbo Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期30-38,I0003,共10页
Vanadium-based compounds with high theoretical capacities and relatively stable crystal structures are potential cathodes for aqueous zinc-ion batteries(AZIBs).Nevertheless,their low electronic conductivity and sluggi... Vanadium-based compounds with high theoretical capacities and relatively stable crystal structures are potential cathodes for aqueous zinc-ion batteries(AZIBs).Nevertheless,their low electronic conductivity and sluggish zinc-ion diffusion kinetics in the crystal lattice are greatly obstructing their practical application.Herein,a general and simple nitrogen doping strategy is proposed to construct nitrogen-doped VO_(2)(B)nanobelts(denoted as VO_(2)-N)by the ammonia heat treatment.Compared with pure VO_(2)(B),VO_(2)-N shows an expanded lattice,reduced grain size,and disordered structure,which facilitates ion transport,provides additional ion storage sites,and improves structural durability,thus presenting much-enhanced zinc-ion storage performance.Density functional theory calculations demonstrate that nitrogen doping in VO_(2)(B)improves its electronic properties and reduces the zinc-ion diffusion barrier.The optimal VO_(2)-N400 electrode exhibits a high specific capacity of 373.7 mA h g^(-1)after 100 cycles at 0.1 A g^(-1)and stable cycling performance after 2000 cycles at 5 A g^(-1).The zinc-ion storage mechanism of VO_(2)-N is identified as a typical intercalation/de-intercalation process. 展开更多
关键词 Vanadium dioxide Nitrogen doping Cathode materials Aqueous zinc-ion batteries
下载PDF
Electrolyte Strategies Toward Optimizing Zn Anode for Zinc-Ion Batteries
14
作者 Zenglong Xu Huiyan Xu +5 位作者 Jinfeng Sun Jieqiang Wang Degang Zhao Bingqiang Cao Xiutong Wang Shuhua Yang 《Transactions of Tianjin University》 EI CAS 2023年第6期407-431,共25页
Zinc-ion batteries(ZIBs)with low cost and high safety have become potential candidates for large-scale energy storage.However,the knotty Zn anode issues such as dendritic growth,hydrogen evolution reaction(HER)and cor... Zinc-ion batteries(ZIBs)with low cost and high safety have become potential candidates for large-scale energy storage.However,the knotty Zn anode issues such as dendritic growth,hydrogen evolution reaction(HER)and corrosion and passivation are still unavoidable,which greatly limits the wide applications of ZIBs.The states and additives of electrolytes are closely related to these problems.However,there is a lack of systematic understanding and discussion about the intrinsic connection between the states and additives of electrolyte and Zn anode issues.In this review,the basic principles of dendritic growth,HER and corrosion and passivation are fi rstly introduced,and then,electrolyte optimization strategies with the corresponding electrochemical properties are systematically summarized.In particular,the action mechanism of electrolyte additives and the electrolyte states for Zn anode optimization is analyzed in detail.Finally,some unique views on the improvement of electrolyte for Zn anode optimization are put forward,which is expected to provide a certain professional reference for designing high-performance ZIBs. 展开更多
关键词 zinc-ion batteries Zn anode ELECTROLYTE ADDITIVES
下载PDF
Understanding of the charge storage mechanism of MnO_(2)-based aqueous zinc-ion batteries:Reaction processes and regulation strategies
15
作者 Nan Zhang Yu-Rui Ji +3 位作者 Jian-Cang Wang Peng-Fei Wang Yan-Rong Zhu Ting-Feng Yi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期423-463,I0010,共42页
Though secondary aqueous Zn ion batteries(AZIBs)have been received broad concern in recent years,the development of suitable cathode materials of AZIBs is still a big challenge.The MnO_(2) has been deemed as one of mo... Though secondary aqueous Zn ion batteries(AZIBs)have been received broad concern in recent years,the development of suitable cathode materials of AZIBs is still a big challenge.The MnO_(2) has been deemed as one of most hopeful cathode materials of AZIBs on account of some extraordinary merits,such as richly natural resources,low toxicity,high discharge potential,and large theoretical capacity.However,the crystal structure diversity of MnO_(2) results in an obvious various of charge storage mechanisms,which can cause great differences in electrochemical performance.Furthermore,several challenges,including intrinsic poor conductivity,dissolution of manganese and sluggish ion transport dynamics should be conquered before real practice.This work focuses on the reaction mechanisms and recent progress of MnO_(2)-based materials of AZIBs.In this review,a detailed review of the reaction mechanisms and optimal ways for enhancing electrochemical performance for MnO_(2)-based materials is proposed.At last,a number of viewpoints on challenges,future development direction,and foreground of MnO_(2)-based materials of aqueous zinc ions batteries are put forward.This review clarifies reaction mechanism of MnO_(2)-based materials of AZIBs,and offers a new perspective for the future invention in MnO_(2)-based cathode materials,thus accelerate the extensive development and commercialization practice of aqueous zinc ions batteries. 展开更多
关键词 Aqueous zinc-ion battery MnO_(2) Charge storage mechanism Optimization strategy
下载PDF
Sn-doped BiOCl nanosheet with synergistic H^(+)/Zn^(2+)co-insertion for“rocking chair”zinc-ion battery
16
作者 Yuzhu Qian Hongrui Wang +6 位作者 Xinni Li Ting Song Yong Pei Li Liu Bei Long Xiongwei Wu Xianyou Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期623-632,I0014,共11页
The development of insertion-type anodes is the key to designing“rocking chair”zinc-ion batteries.However,there is rare report on high mass loading anode with high performances.Here,{001}-oriented Bi OCl nanosheets ... The development of insertion-type anodes is the key to designing“rocking chair”zinc-ion batteries.However,there is rare report on high mass loading anode with high performances.Here,{001}-oriented Bi OCl nanosheets with Sn doping are proposed as a promising insertion-type anode.The designs of cross-linked CNTs conductive network,{001}-oriented nanosheet,and Sn doping significantly enhance ion/electron transport,proved via experimental tests and theoretical calculations(density of states and diffusion barrier).The H^(+)/Zn^(2+)synergistic co-insertion mechanism is proved via ex situ XRD,Raman,XPS,and SEM tests.Accordingly,this optimized electrode delivers a high reversible capacity of 194 m A h g^(-1)at 0.1 A g^(-1)with a voltage of≈0.37 V and an impressive cyclability with 128 m A h g^(-1)over 2500 cycles at 1 A g^(-1).It also shows satisfactory performances at an ultrahigh mass loading of 10 mg cm^(-2).Moreover,the Sn-Bi OCl//MnO_(2)full cell displays a reversible capacity of 85 m A h g^(-1)at 0.2 A g^(-1)during cyclic test. 展开更多
关键词 Sn-doped BiOCl nanosheet High mass loading anode Synergistic H^(+)/Zn^(2+)co-insertion Fast ionic/electronic diffusion “Rocking chair”zinc-ion battery
下载PDF
Recent Progress on Zinc-Ion Rechargeable Batteries 被引量:18
17
作者 Wangwang Xu Ying Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期575-604,共30页
The increasing demands for environmentally friendly grid-scale electric energy storage devices with high energy density and low cost have stimulated the rapid development of various energy storage systems,due to the e... The increasing demands for environmentally friendly grid-scale electric energy storage devices with high energy density and low cost have stimulated the rapid development of various energy storage systems,due to the environmental pollution and energy crisis caused by traditional energy storage technologies.As one of the new and most promising alternative energy storage technologies,zinc-ion rechargeable batteries have recently received much attention owing to their high abundance of zinc in natural resources,intrinsic safety,and cost effectiveness,when compared with the popular,but unsafe and expensive lithium-ion batteries.In particular,the use of mild aqueous electrolytes in zinc-ion batteries(ZIBs)demonstrates high potential for portable electronic applications and large-scale energy storage systems.Moreover,the development of superior electrolyte operating at either high temperature or subzero condition is crucial for practical applications of ZIBs in harsh environments,such as aerospace,airplanes,or submarines.However,there are still many existing challenges that need to be resolved.This paper presents a timely review on recent progresses and challenges in various cathode materials and electrolytes(aqueous,organic,and solid-state electrolytes)in ZIBs.Design and synthesis of zinc-based anode materials and separators are also briefly discussed. 展开更多
关键词 zinc-ion batteries ELECTROLYTE CATHODE ZINC ANODE Flexible device
下载PDF
γ-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery 被引量:14
18
作者 Chao Wang Yinxiang Zeng +6 位作者 Xiang Xiao Shijia Wu Guobin Zhong Kaiqi Xu Zengfu Wei Wei Su Xihong Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第4期182-187,共6页
Aqueous Zn//MnO2 batteries are emerging as promising large-scale energy storage devices owing to their cost-effectiveness,high safety,high output voltage,and energy density.However,the MnO2 cathode suffers from intrin... Aqueous Zn//MnO2 batteries are emerging as promising large-scale energy storage devices owing to their cost-effectiveness,high safety,high output voltage,and energy density.However,the MnO2 cathode suffers from intrinsically poor rate performance and rapid capacity deterioration.Here,we remove the roadblock by compositing MnO2 nanorods with highly conductive graphene,which remarkably enhances the electrochemical properties of the MnO2 cathode.Benefiting from the boosted electric conductivity and ion diffusion rate as well as the structural protection of graphene,the Zn//MnO2-graphene battery presents an admirable capacity of 301 mAh g^-1 at 0.5 A g^-1,corresponding to a high energy density of 411.6 Wh kg^-1.Even at a high current density of 10 A g^-1,a decent capacity of 95.8 mAh g^-1 is still obtained,manifesting its excellent rate property.Furthermore,an impressive power density of 15 kW kg^-1 is achieved by the Zn//MnO2-graphene battery. 展开更多
关键词 γ-MnO2 GRAPHENE zinc-ion BATTERY HIGH-CAPACITY CATHODE
下载PDF
V2O5 Nanospheres with Mixed Vanadium Valences as High Electrochemically Active Aqueous Zinc-Ion Battery Cathode 被引量:12
19
作者 Fei Liu Zixian Chen +5 位作者 Guozhao Fang Ziqing Wang Yangsheng Cai Boya Tang Jiang Zhou Shuquan Liang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第2期98-108,共11页
AV4+-V2O5 cathode with mixed vanadium valences was prepared via a novel synthetic method using VOOH as the precursor,and its zinc-ion storage performance was evaluated.The products are hollow spheres consisting of nan... AV4+-V2O5 cathode with mixed vanadium valences was prepared via a novel synthetic method using VOOH as the precursor,and its zinc-ion storage performance was evaluated.The products are hollow spheres consisting of nanoflakes.The V4+-V2O5 cathode exhibits a prominent cycling performance,with a specific capacity of 140 mAhg-1 after 1000 cycles at 10 A g.1,and an excellent rate capability.The good electrochemical performance is attributed to the presence of V4+,which leads to higher electrochemical activity,lower polarization,faster ion diffusion,and higher electrical conductivity than V2O5 without V4+.This engineering strategy of valence state manipulation may pave the way for designing high-performance cathodes for elucidating advanced battery chemistry. 展开更多
关键词 V2O5 MIXED valences Hollow sphere Long-cycle-life AQUEOUS zinc-ion BATTERY
下载PDF
Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries 被引量:7
20
作者 Xuyong Chen Liubin Wang +2 位作者 Hang Li Fangyi Cheng Jun Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第11期20-25,共6页
Rechargeable aqueous zinc-ion batteries are recently gaining incremental attention because of low cost and material abundance, but their development is plagued by limited choice of cathode materials with satisfactory ... Rechargeable aqueous zinc-ion batteries are recently gaining incremental attention because of low cost and material abundance, but their development is plagued by limited choice of cathode materials with satisfactory cycling performance. Here, we report a porous V2O5 nanofibers cathode with high Znstorage performance in an aqueous Zn(CF3SO3)2 electrolyte. We propose a reaction mechanism based on phase transition from orthorhombic V2O5 to zinc pyrovanadate on first discharging and reversible Zn^2+ (de)intercalation in the open-structured hosts during subsequent cycling. This open and stable architecture enables a high reversible capacity of 319 mAh g^-1 at 20 mAg^-1 and a capacity retention of 81% over 500 cycles. The remarkable electrochemical performance makes V2O5 a promising cathode for aqueous zinc-ion batteries. 展开更多
关键词 AQUEOUS zinc-ion batteries Vanadium oxide Insertion reaction Phase transition
下载PDF
上一页 1 2 59 下一页 到第
使用帮助 返回顶部