期刊文献+
共找到256篇文章
< 1 2 13 >
每页显示 20 50 100
Temperature inversion enables superior stability for low-temperature Zn-ion batteries
1
作者 Fu-Da Yu Zhe-Jian Yi +10 位作者 Rui-Yang Li Wei-Hao Lin Jie Chen Xiao-Yue Chen Yi-Ming Xie Ji-Huai Wu Zhang Lan Lan-Fang Que Bao-Sheng Liu Hao Luo Zhen-Bo Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期245-253,共9页
It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing ... It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing point and high ionic conductivity is proposed.Combined with molecular dynamics simulation and multi-scale interface analysis(time of flight secondary ion mass spectrometry threedimensional mapping and in-situ electrochemical impedance spectroscopy method),the temperature independence of the V_(2)O_(5)cathode and Zn anode is observed to be opposite.Surprisingly,dominated by the solvent structure of the designed electrolyte at low temperatures,vanadium dissolution/shuttle is significantly inhibited,and the zinc dendrites caused by this electrochemical crosstalk are greatly relieved,thus showing an abnormal temperature inversion effect.Through the disclosure and improvement of the above phenomena,the designed Zn||V_(2)O_(5)full cell delivers superior low-T performance,maintaining almost 99%capacity retention after 9500 cycles(working more than 2500 h)at-20°C.This work proposes a kind of electrolyte suitable for low-T ZIBs and reveals the inverse temperature dependence of the Zn anode,which might offer a novel perspective for the investigation of low-T aqueous battery systems. 展开更多
关键词 Aqueous zn-ion batteries Low-temperature performance Opposite temperature dependence Zndendrite growth Vanadium dissolution
下载PDF
All-Climate Stretchable Dendrite-Free Zn-Ion Hybrid Supercapacitors Enabled by Hydrogel Electrolyte Engineering 被引量:2
2
作者 Yuqi Jiang Kun Ma +2 位作者 Meiling Sun Yuanyuan Li Jinping Liu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期381-388,共8页
Hybrid supercapacitors have shown great potentials to fulfill the demand of future diverse applications such as electric vehicles and portable/wearable electronics.In particular,aqueous zinc-ion hybrid supercapacitors... Hybrid supercapacitors have shown great potentials to fulfill the demand of future diverse applications such as electric vehicles and portable/wearable electronics.In particular,aqueous zinc-ion hybrid supercapacitors(ZHSCs)have gained much attention due to their low-cost,high energy density,and environmental friendliness.Nevertheless,typical ZHSCs use Zn metal anode and normal liquid electrolyte,causing the dendrite issue,restricted working temperature,and inferior device flexibility.Herein,a novel flexible Zn-ion hybrid supercapacitor(FZHSC)is developed by using activated carbon(AC)anode,δ-MnO_(2) cathode,and innovative PVA-based gel electrolyte.In this design,heavy Zn anode and its dendrite issue are avoided and layered cathode with large interlayer spacing is employed.In addition,flexible electrodes are prepared and integrated with an anti-freezing,stretchable,and compressible hydrogel electrolyte,which is attained by simultaneously using glycerol additive and freezing/thawing technique to regulate the hydrogen bond and microstructure.The resulting FZHSC exhibits good rate capability,high energy density(47.86 Wh kg^(−1);3.94 mWh cm^(−3)),high power density(5.81 kW kg^(−1);480 mW cm^(−3)),and excellent cycling stability(~91%capacity retention after 30000 cycles).Furthermore,our FZHSC demonstrates outstanding flexibility with capacitance almost unchanged even after various continuous shape deformations.The hydrogel electrolyte still maintains high ionic conductivity at ultralow temperatures(≤−30℃),enabling the FZHSC cycled well,and powering electronic timer robustly within an all-climate temperature range of−30~80℃.This work highlights that the promising Zn metal-free aqueous ZHSCs can be designed with great multifunctionality for more practical application scenarios. 展开更多
关键词 all-climate operation dendrite-free anode high flexibility multifunctional gel electrolyte zn-ion hybrid supercapacitor
下载PDF
Recent progress in flexible Zn-ion hybrid supercapacitors: Fundamentals, fabrication designs, and applications 被引量:1
3
作者 Muhammad Sufyan Javed Sumreen Asim +5 位作者 Tayyaba Najam Muhammad Khalid Iftikhar Hussain Awais Ahmad Mohammed A.Assiri Weihua Han 《Carbon Energy》 SCIE CAS CSCD 2023年第1期82-122,共41页
One of the most exciting new developments in energy storage technology is flexible Zn-ion hybrid supercapacitors(f-ZIHSCs),which combine the high energy of Zn-ion batteries with high-power supercapacitors to satisfy t... One of the most exciting new developments in energy storage technology is flexible Zn-ion hybrid supercapacitors(f-ZIHSCs),which combine the high energy of Zn-ion batteries with high-power supercapacitors to satisfy the needs of portable flexible electronics.However,the development of f-ZHSCs is still in its infancy,and there are numerous barriers to overcome before they can be widely implemented for practical applications.This review gives an up-to-date description of recent achievements and underlying concepts in energy storage mechanisms of f-ZIHSCs and emphasizes the critical role of cathode,anode,and electrolyte materials systems in speeding the prosperity of f-ZIHSCs.The innovative nanostructured-based cathode materials for f-ZIHSCs include carbon(e.g.,porous carbon,heteroatom-doped carbon,biomass-derived porous carbon,graphene,etc.),metal-oxides,MXenes,and metal/covalentorganic frameworks,and other materials(e.g.,activated carbon,phosphorene,etc.)are mainly focused.Afterward,the latest developments in flexible anode and electrolyte frameworks and impacts of electrolyte compositions on the electrochemical properties of f-ZIHSC are elaborated.Subsequently,the advancements based on fabrication designs,including quasi-solid-state,micro,fiber-shaped,and all climate-changed f-ZIHSCs,are discussed in detail.Lastly,a summary of current challenges and recommendations for the future progress of advanced f-ZIHSC are addressed.This review article is anticipated to further understand the viable strategies and achievable approaches for assembling high-performance f-ZIHSCs and boost the technical revolutions on cathode,anode,and electrolytes for f-ZIHSC devices. 展开更多
关键词 electrode electrolyte FLEXIBLE MOFs MXenes zn-ion hybrid supercapacitor
下载PDF
Bifunctional electrolyte regulation towards low-temperature and high-stability Zn-ion hybrid capacitor
4
作者 Shuo Yang Kui Xue +3 位作者 Haiyang Liao Yuning Guo Liujiang Zhou Yongqi Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期495-504,共10页
Aqueous Zinc-based energy storage devices are considered as one of the potential candidates in future power technologies.Nevertheless,poor low temperature performance and uncontrollable Zn dendrite growth lead to the ... Aqueous Zinc-based energy storage devices are considered as one of the potential candidates in future power technologies.Nevertheless,poor low temperature performance and uncontrollable Zn dendrite growth lead to the limited energy storage capability.Herein,an anti-hydrolysis,cold-resistant,economical,safe,and environmentally friendly electrolyte is developed by utilizing water,ethylene glycol(EG),and ZnCl_(2)with high ionic conductivity(7.9 mS cm^(-1)in glass fiber membrane at-20℃).The spectra data and DFT calculations show the competitive coordination of EG and Cl-to induce a unique solvation configuration of Zn^(2+),conducive to effectively inhibiting the hydrolysis of Zn^(2+),suppressing the dendrite growth,and broadening the working voltage range and temperature range of ZnCl_(2)electrolyte.The isotope tracing data confirm that Cl^(-)could effectively destroy the ZnO passivation film,promoting the formation of Zn nuclei and improving its reaction activity.Compared to the corresponding ZnSO4electrolyte,the Cu/Zn half-cell with the ZnCl_(2)electrolyte exhibits a stable cycle life of more than 1600 h at-20℃,even at the current density of 5 mA cm^(-2).The assembled Zn-ion hybrid capacitor possesses an average capacity of 42.68 m A h g^(-1)under-20℃at a current density of 5 A g^(-1),3.5 times than that of the modified ZnSO4electrolyte.Our work proposes a new approach for optimizing aqueous electrolytes to meet low temperature energy storage applications. 展开更多
关键词 Hybrid electrolyte zn-ion capacitor Anti-hydrolysis Low temperature Dendrite-free
下载PDF
A Better Zn-Ion Storage Device:Recent Progress for Zn-Ion Hybrid Supercapacitors 被引量:4
5
作者 Jialun Jin Xiangshun Geng +1 位作者 Qiang Chen Tian-Ling Ren 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第4期158-206,共49页
As a new generation of Zn-ion storage systems,Zn-ion hybrid supercapacitors(ZHSCs)garner tremendous interests recently from researchers due to the perfect integration of batteries and supercapacitors.ZHSCs have excell... As a new generation of Zn-ion storage systems,Zn-ion hybrid supercapacitors(ZHSCs)garner tremendous interests recently from researchers due to the perfect integration of batteries and supercapacitors.ZHSCs have excellent integration of high energy density and power density,which seamlessly bridges the gap between batteries and supercapacitors,becoming one of the most viable future options for large-scale equipment and portable electronic devices.However,the currently reported two configurations of ZHSCs and corresponding energy storage mechanisms still lack systematic analyses.Herein,this review will be prudently organized from the perspectives of design strategies,electrode configurations,energy storage mechanisms,recent advances in electrode materials,electrolyte behaviors and further applications(micro or flexible devices)of ZHSCs.The synthesis processes and electrochemical properties of well-designed Zn anodes,capacitor-type electrodes and novel Zn-ion battery-type cathodes are comprehensively discussed.Finally,a brief summary and outlook for the further development of ZHSCs are presented as well.This review will provide timely access for researchers to the recent works regarding ZHSCs. 展开更多
关键词 zn-ion storage systems zn-ion hybrid supercapacitors Carbon electrodes Zinc anodes Electrolytes
下载PDF
Towards High-Energy and Anti-Self-Discharge Zn-Ion Hybrid Supercapacitors with New Understanding of the Electrochemistry 被引量:2
6
作者 Yang Li Wang Yang +6 位作者 Wu Yang Ziqi Wang Jianhua Rong Guoxiu Wang Chengjun Xu Feiyu Kang Liubing Dong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第6期268-283,共16页
Aqueous Zn-ion hybrid supercapacitors(ZHSs)are increasingly being studied as a novel electrochemical energy storage system with prominent electrochemical performance,high safety and low cost.Herein,high-energy and ant... Aqueous Zn-ion hybrid supercapacitors(ZHSs)are increasingly being studied as a novel electrochemical energy storage system with prominent electrochemical performance,high safety and low cost.Herein,high-energy and anti-self-discharge ZHSs are realized based on the fibrous carbon cathodes with hierarchically porous surface and O/N heteroatom functional groups.Hierarchically porous surface of the fabricated free-standing fibrous carbon cathodes not only provides abundant active sites for divalent ion storage,but also optimizes ion transport kinetics.Consequently,the cathodes show a high gravimetric capacity of 156 mAh g^(−1),superior rate capability(79 mAh g^(−1)with a very short charge/discharge time of 14 s)and exceptional cycling stability.Meanwhile,hierarchical pore structure and suitable surface functional groups of the cathodes endow ZHSs with a high energy density of 127 Wh kg−1,a high power density of 15.3 kW kg^(−1)and good anti-self-discharge performance.Mechanism investigation reveals that ZHS electrochemistry involves cation adsorption/desorption and Zn_(4)SO_(4)(OH)_(6)·5H_(2)O formation/dissolution at low voltage and anion adsorption/desorption at high voltage on carbon cathodes.The roles of these reactions in energy storage of ZHSs are elucidated.This work not only paves a way for high-performance cathode materials of ZHSs,but also provides a deeper understanding of ZHS electrochemistry. 展开更多
关键词 zn-ion hybrid supercapacitor Carbon material Fibrous cathode Hierarchical pore structure HIGH-ENERGY
下载PDF
Layered hydrated vanadium oxide as highly reversible intercalation cathode for aqueous Zn-ion batteries 被引量:6
7
作者 Pinji Wang Xiaodong Shi +3 位作者 Zhuoxi Wu Shan Guo Jiang Zhou Shuquan Liang 《Carbon Energy》 CAS 2020年第2期294-301,共8页
Aqueous Zn-ion batteries(ZIBs)hold great potential in large-scale energy storage systems due to the merits of low-cost and high safety.However,the unstable structure of cathode materials and sluggish(de)intercalation ... Aqueous Zn-ion batteries(ZIBs)hold great potential in large-scale energy storage systems due to the merits of low-cost and high safety.However,the unstable structure of cathode materials and sluggish(de)intercalation kinetics of Zn2+pose challenges for further development.Herein,highly reversible aqueous ZIBs are constructed with layered hydrated vanadium oxide as a cathode material.The electrochemical performances are further tested with the optimized electrolyte of 3M Zn(CF3SO3)2 and a cut-off voltage of 0.4 to 1.3 V,exhibiting a remarkable capacity of 290mAh g−1 at 0.5Ag−1,and long-term cycling stability at high current density.Furthermore,the Zn2+storage mechanism of V3O7⋅H2O is recognized as a highly reversible(de)intercalation process with good structural stability,implying the potential application in the field of large-scale energy storage. 展开更多
关键词 cut-off voltage hydrated vanadium oxide layered structure zinc storage mechanism zn-ion battery
下载PDF
In-Situ Annealed Ti_(3)C_(2)T_(x) MXene Based All-Solid-State Flexible Zn-Ion Hybrid Micro Supercapacitor Array with Enhanced Stability 被引量:2
8
作者 La Li Weijia Liu +3 位作者 Kai Jiang Di Chen Fengyu Qu Guozhen Shen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第6期332-342,共11页
Zn-ion hybrid supercapacitors(SCs)are considered as promising energy storage owing to their high energy density compared to traditional SCs.How to realize the miniaturization,patterning,and flexibility of the Zn-ion S... Zn-ion hybrid supercapacitors(SCs)are considered as promising energy storage owing to their high energy density compared to traditional SCs.How to realize the miniaturization,patterning,and flexibility of the Zn-ion SCs without affecting the electrochemical performances has special meanings for expanding their applications in wearable integrated electronics.Ti_(3)C_(2)T_(x) cathode with outstanding conductivity,unique lamellar structure and good mechanical flexibility has been demonstrated tremen-dous potential in the design of Zn-ion SCs,but achieving long cycling stability and high rate stability is still big challenges.Here,we proposed a facile laser writing approach to fabricate patterned Ti_(3)C_(2)T_(x)-based Zn-ion micro-supercapacitors(MSCs),followed by the in-situ anneal treatment of the assembled MSCs to improve the long-term stability,which exhibits 80%of the capacitance retention even after 50,000 charge/discharge cycles and superior rate stability.The influence of the cathode thickness on the electrochemical performance of the MSCs is also studied.When the thickness reaches 0.851μm the maximum areal capacitance of 72.02 mF cm^(−2)at scan rate of 10 mV s^(−1),which is 1.77 times higher than that with a thickness of 0.329μm(35.6 mF cm^(−2)).Moreover,the fab-ricated Ti_(3)C_(2)T_(x) based Zn-ion MSCs have excellent flexibility,a digital timer can be driven by the single device even under bending state,a flexible LED displayer of“TiC”logo also can be easily lighted by the MSC arrays under twisting,crimping,and winding conditions,demonstrating the scalable fabrication and application of the fabricated MSCs in portable electronics. 展开更多
关键词 Ti_(3)C_(2)T_(x) MXene Laser writing zn-ion hybrid supercapacitor Flexible energy storage
下载PDF
Flexible Zn-ion batteries based on manganese oxides: Progress and prospect 被引量:2
9
作者 Xingyuan Gao Haozhe Zhang +1 位作者 Xiaoqing Liu Xihong Lu 《Carbon Energy》 CAS 2020年第3期387-407,共21页
The ever-growing market of wearable electronic devices has greatly stimulated the rapid development of flexible Zn-ion batteries(ZIBs).Manganese oxides are one of the most commonly used hosts for zinc ion accommodatio... The ever-growing market of wearable electronic devices has greatly stimulated the rapid development of flexible Zn-ion batteries(ZIBs).Manganese oxides are one of the most commonly used hosts for zinc ion accommodation and thus receive particular research interest for high-performance flexible ZIB constructions.In this review,a comprehensive summary of the recent development of flexible ZIBs with manganese oxides as cathode materials is presented.Apart from the brief introduction of flexible electronic devices and ZIBs,the charge storage mechanisms and crystal structures of various manganese oxides are summarized.Modifications of the cathode materials in terms of morphology,conductivity,structures,and flexibilities are illustrated in detail,together with the demonstration of structure-performance relationships and applications in flexible ZIBs.Finally,limitations to be overcome are indicated and the future work directions are proposed. 展开更多
关键词 cathodes flexible devices manganese oxides MNO2 zn-ion batteries
下载PDF
Realizing high-performance Zn-ion batteries by a reduced graphene oxide block layer at room and low temperatures
10
作者 Jian-Qiu Huang Xiuyi Lin +2 位作者 Hong Tan Xiaoqiong Du Biao Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第4期1-7,共7页
Rechargeable aqueous Zn-ion batteries (ZIBs) have attracted great attention due to their costeffectiveness,high safety,and environmental friendliness.However,some issues associated with poor structural instability of ... Rechargeable aqueous Zn-ion batteries (ZIBs) have attracted great attention due to their costeffectiveness,high safety,and environmental friendliness.However,some issues associated with poor structural instability of cathode materials and fast self-discharge hinder the further development of ZIBs.Herein,a new configuration is introduced by placing a reduced graphene oxide film as a block layer between the separator and the V2O5·nH2O cathode.This layer prevents the free diffusion of dissolved active materials to the anode and facilitates the transport of Zn ion and electrons,largely improving the cyclic stability and alleviating the self-discharge.Accordingly,the optimized battery delivers a remarkable capacity of 191 mAh g^-1 after 500 cycles at 2 A g^-1.Moreover,a high capacity of 106 mAh g^-1 is achieved after 100 cycles at-20℃.The strategy proposed is expected to be applicable to other electrode systems,thus offering a new approach to circumvent the critical challenges facing aqueous batteries. 展开更多
关键词 BLOCK LAYER Dissolution SELF-DISCHARGE Low TEMPERATURES Aqueous zn-ion batteries
下载PDF
Dendrite-free Zn deposition initiated by nanoscale inorganic-organic coating-modified 3D host for stable Zn-ion battery
11
作者 Jiaming Dong Junwen Duan +11 位作者 Ruirui Cao Wang Zhang Kangkang Fang Hao Yang Ying Liu Zhitao Shen Fumin Li Rong Liu Mengqi Jin Longhui Lei Huilin Li Chong Chen 《SusMat》 SCIE EI 2024年第2期13-27,共15页
A 3D nanostructured scaffold as the host for zinc enables effective inhibition of anodic dendrite growth.However,the increased electrode/electrolyte interface area provided by using 3D matrices exacerbates the passiva... A 3D nanostructured scaffold as the host for zinc enables effective inhibition of anodic dendrite growth.However,the increased electrode/electrolyte interface area provided by using 3D matrices exacerbates the passivation and localized corrosion of the Zn anode,ultimately bringing about the degradation of the electrochemical performance.Herein,a nanoscale coating of inorganic-organic hybrid(α-In_(2)Se_(3)-Nafion)onto a flexible carbon nanotubes(CNTs)framework(ISNF@CNTs)is designed as a Zn plating/stripping scaffold to ensure uniform Zn nucleation,thus achieving a dendrite-free and durable Zn anode.The intro-duced inorganic-organic interfacial layer is dense and sturdy,which hinders the direct exposure of deposited Zn to electrolytes and mitigates the side reactions.Meanwhile,the zincophilic nature of ISNF can largely reduce the nucleation energy barrier and promote the ion-diffusion transportation.Consequently,the ISNF@CNTs@Zn electrode exhibits a low-voltage hysteresis and a superior cycling life(over 1500 h),with dendrite-free Zn-plating behaviors in a typical symmetrical cell test.Additionally,the superior feature of ISNF@CNTs@Zn anode is further demonstrated by Zn-MnO_(2)cells in both coin and flexible quasi-solid-state configurations.This work puts forward an inspired remedy for advanced Zn-ion batteries. 展开更多
关键词 2D/3D configuration dendrite-free inorganic-organic layer interfacial protection zn-ion batteries
原文传递
Oxygen functional groups modified amorphous hollow carbon bowls for pseudocapacitive Zn-ion storage
12
作者 Gongxun Yu Fenghui Yang +7 位作者 Xu Han Qiongyao Song Jiangtao Zheng Ying Qi Tianming Chen Qian Shen Jingxia Qiu Sheng Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第12期392-395,共4页
Carbon is a promising capacitive electrode material for Zn-ion hybrid supercapacitors(ZHSCs),as it is low-cost,environmentally friendly,controllable and adjustable.By now,achieving both high energy and high power with... Carbon is a promising capacitive electrode material for Zn-ion hybrid supercapacitors(ZHSCs),as it is low-cost,environmentally friendly,controllable and adjustable.By now,achieving both high energy and high power with carbon electrodes is still challenging,limited by their intrinsic properties.In this work,we have designed and presented an amorphous hollow carbon bowl material with surface chemical modifications of oxygen groups to figure out these concerns.The preparation of bowl-like structures and the storage behavior between Zn^(2+)and oxygen functional groups have also been discussed.With the contributions from its unique hollow structure and surface functional groups,it can significantly enhance the electrode pseudocapacitance and the entire electrochemical performance. 展开更多
关键词 zn-ionhybrid supercapacitors Hollowcarbon bowls Oxygen groups PSEUDOCAPACITANCE zn-ion storage
原文传递
An integrated flexible self-healing Zn-ion battery using dendrite-suppressible hydrogel electrolyte and free-standing electrodes for wearable electronics
13
作者 Jiawei Long Tianli Han +4 位作者 Xirong Lin Yajun Zhu Yingyi Ding Jinyun Liu Huigang Zhang 《Nano Research》 SCIE EI CSCD 2023年第8期11000-11011,共12页
Among many aqueous batteries,flexible zinc-ion(Zn-ion)battery becomes the focus owing to the merits of low cost,non-toxicity,and safety.Here,a Zn dendrite-suppressible hydrogel electrolyte with both flexible and self-... Among many aqueous batteries,flexible zinc-ion(Zn-ion)battery becomes the focus owing to the merits of low cost,non-toxicity,and safety.Here,a Zn dendrite-suppressible hydrogel electrolyte with both flexible and self-healing properties is developed via photoinitiated polymerization.The cross-linked structure of the polyacrylamide-N,N'-methylenebisacrylamide(PAM-MBA)-Zn/Mn hydrogel endows an enlarged chemical stable window,high ionic conductivity,and low polarization potential.After cycling at the current density of 0.5 mA·cm^(−2)for 250 h,Zn‖Zn symmetrical cell based on PAM-MBA-Zn/Mn electrolyte delivers a low polarization of 40 mV.The suppressed dendrite growth is ascribed to the uniform Zn deposition/stripping on anode.The galvanostatic intermittent titration technique curves display that the Zn-ion battery constructed by the PAM-MBA-Zn/Mn hydrogel electrolyte,free-standing FeVO_(4)/carbon cloth cathode,and Zn nanosheets/carbon cloth anode presents low reaction resistance and fast diffusion coefficient,indicating good endurance of cycling at high current densities.The battery with PAM-MBA-Zn/Mn hydrogel electrolyte presents a good flexible and self-healing performance.After bending 0°,60°,90°,and 180°for 30 times,batteries deliver stable capacities.Even cutting into ten pieces,the battery could self-heal and display a potential retention of 93.7%compared to the fresh cell.A good rate-performance is also achieved.After cutting/healing three times during cycling,capacity recovers well compared to the first-time cutting/healing.Moreover,the battery exhibits good flexibility using in an electric watch,indicating a promising potential for wearable electronics. 展开更多
关键词 zn-ion battery FLEXIBLE SELF-HEALING dendrite growth cycling life
原文传递
CC@BCN@PANI core-shell nanoarrays as ultra-high cycle stability cathode for Zn-ion hybrid supercapacitors
14
作者 Shixian XIONG Hongcheng KE +5 位作者 Lei CAO Yu WANG Qian ZHU Liqin ZHONG Lanlan FAN Feng GU 《Frontiers in Energy》 SCIE CSCD 2023年第4期555-566,共12页
Exploring cathode materials that combine excellent cycling stability and high energy density poses a challenge to aqueous Zn-ion hybrid supercapacitors(ZHSCs).Herein,polyaniline(PANI)coated boron-carbon-nitrogen(BCN)n... Exploring cathode materials that combine excellent cycling stability and high energy density poses a challenge to aqueous Zn-ion hybrid supercapacitors(ZHSCs).Herein,polyaniline(PANI)coated boron-carbon-nitrogen(BCN)nanoarray on carbon cloth surface is prepared as advanced cathode materials via simple high-temperature calcination and electrochemical deposition methods.Because of the excellent specific capacity and conductivity of PANI,the CC@BCN@PANI core-shell nanoarrays cathode shows an excellent ion storage capability.Moreover,the 3D nanoarray structure can provide enough space for the volume expansion and contraction of PANI in the charging/discharging cycles,which effectively avoids the collapse of the microstructure and greatly improves the electrochemical stability of PANI.Therefore,the CC@BCN@PANI-based ZHSCs exhibit superior electrochemical performances showing a specific capacity of 145.8 mAh/g,a high energy density of 116.78 Wh/kg,an excellent power density of 12 kW/kg,and a capacity retention rate of 86.2%after 8000 charge/discharge cycles at a current density of 2 A/g.In addition,the flexible ZHSCs(FZHSCs)also show a capacity retention rate of 87.7%at the current density of 2 A/g after 450 cycles. 展开更多
关键词 CC@BCN@PANI cathode zn-ion hybrid supercapacitor core-shell nanoarrays high energy density ultra-high cycle stability
原文传递
g-C_(3)N_(4)-coated MnO_(2)hollow nanorod cathode for stable aqueous Zn-ion batteries
15
作者 Jiwei Xie Guijing Liu +5 位作者 Kaikai Wang Xueming Li Yusen Bai Shanmin Gao Leqing Fan Rundou Zheng 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2023年第2期217-225,共9页
Aqueous zinc-ion batteries are attracting considerable attention because of their high safety compared with conventional lithium-ion batteries.Manganese-based materials have been widely developed for zinc-ion batterie... Aqueous zinc-ion batteries are attracting considerable attention because of their high safety compared with conventional lithium-ion batteries.Manganese-based materials have been widely developed for zinc-ion batteries cathode owning to their low cost,high security and simple preparation.However,the severe volume expansion and poor stability during charging and discharging limit the further development of manganese-based cathodes.Herein,superiorα-MnO_(2)@g-C_(3)N_(4)was successfully prepared for stable zinc-ion batteries(ZIBs)cathode by introducing g-C_(3)N_(4)nanosheets.Compared with pureα-MnO_(2),αMnO_(2)@g-C_(3)N_(4)has a specific capacity of 298 mAh·g^(-1)at 0.1 A·g^(-1).Even at 1 A·g^(-1),theα-MnO_(2)@g-C_(3)N_(4)still retains 100 mAh·g^(-1)(83.4%retention after 5000 cycles),implying its excellent cycling stability.Theα-MnO_(2)@gC_(3)N_(4)-based cathode has the highest energy density(563 Wh·kg^(-1))and power energy density(2170 W·kg^(-1)).This work provides new avenues for the development of a wider range of cathode materials for ZIBs. 展开更多
关键词 α-MnO_(2)hollow nanorods g-C_(3)N_(4) heterojunction aqueous zn-ion batteries
原文传递
MIL-100(V) derived porous vanadium oxide/carbon microspheres with oxygen defects and intercalated water molecules as high-performance cathode for aqueous zinc ion battery
16
作者 Yuexin Liu Jian Huang +3 位作者 Xiaoyu Li Jiajia Li Jinhu Yang Kefeng Cai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期578-589,I0013,共13页
The development of aqueous zinc ion battery cathode materials with high capacity and high magnification is still a challenge.Herein,porous vanadium oxide/carbon(p-VO_(x)@C,mainly VO_(2) with a small amount of V_(2)O_(... The development of aqueous zinc ion battery cathode materials with high capacity and high magnification is still a challenge.Herein,porous vanadium oxide/carbon(p-VO_(x)@C,mainly VO_(2) with a small amount of V_(2)O_(3)) core/shell microspheres with oxygen vacancies are facilely fabricated by using a vanadium-based metal-organic framework(MIL-100(V)) as a sacrificial template.This unique structure can improve the conductivity of the VO_(x),accelerate electrolyte diffusion,and suppress structural collapse during circulation.Subsequently,H_(2)O molecules are introduced into the interlayer of VO_(x) through a highly efficient in-situ electrochemical activation process,facilitating the intercalation and diffusion of zinc ions.After the activation,an optimal sample exhibits a high specific capacity of 464.3 mA h g^(-1) at0.2 A g^(-1) and 395.2 mA h g^(-1) at 10 A g^(-1),indicating excellent rate performance.Moreover,the optimal sample maintains a capacity retention of about 89.3% after 2500 cycles at 10 A g^(-1).Density functional theory calculation demonstrates that the presence of oxygen vacancies and intercalated water molecules can significantly reduce the diffusion barrier for zinc ions.In addition,it is proved that the storage of zinc ions in the cathode is achieved by reversible intercalation/extraction during the charge and discharge process through various ex-situ analysis technologies.This work demonstrates that the p-VO_(x)@C has great potential for applications in aqueous ZIBs after electrochemical activation. 展开更多
关键词 Metal-organic frameworks Vanadium oxide Carbon zn-ion batteries Electrochemical activation
下载PDF
Discovering Cathodic Biocompatibility for Aqueous Zn–MnO_(2) Battery:An Integrating Biomass Carbon Strategy
17
作者 Wei Lv Zilei Shen +10 位作者 Xudong Li Jingwen Meng Weijie Yang Fang Ding Xing Ju Feng Ye Yiming Li Xuefeng Lyu Miaomiao Wang Yonglan Tian Chao Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期111-126,共16页
Developing high-performance aqueous Zn-ion batteries from sustainable biomass becomes increasingly vital for large-scale energy storage in the foreseeable future.Therefore,γ-MnO_(2) uniformly loaded on N-doped carbon... Developing high-performance aqueous Zn-ion batteries from sustainable biomass becomes increasingly vital for large-scale energy storage in the foreseeable future.Therefore,γ-MnO_(2) uniformly loaded on N-doped carbon derived from grapefruit peel is successfully fabricated in this work,and particularly the composite cathode with carbon carrier quality percentage of 20 wt%delivers the specific capacity of 391.2 mAh g^(−1)at 0.1 A g^(−1),outstanding cyclic stability of 92.17%after 3000 cycles at 5 A g^(−1),and remarkable energy density of 553.12 Wh kg^(−1) together with superior coulombic efficiency of~100%.Additionally,the cathodic biosafety is further explored specifically through in vitro cell toxicity experiments,which verifies its tremendous potential in the application of clinical medicine.Besides,Zinc ion energy storage mechanism of the cathode is mainly discussed from the aspects of Jahn–Teller effect and Mn domains distribution combined with theoretical analysis and experimental data.Thus,a novel perspective of the conversion from biomass waste to biocompatible Mn-based cathode is successfully developed. 展开更多
关键词 Aqueous zn-ion batteries BIOCOMPATIBILITY Jahn-Teller effect Mn domains γ-MnO_(2)
下载PDF
Recent progress and future research directions for electrochromic zinc-ion batteries
18
作者 Tae Gwang Yun Byungil Hwang Jun Young Cheong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期220-232,I0007,共14页
In recent times,future energy storage systems demand a multitude of functionalities beyond their traditional energy storage capabilities.In line with this technological shift,there is active research and development o... In recent times,future energy storage systems demand a multitude of functionalities beyond their traditional energy storage capabilities.In line with this technological shift,there is active research and development of electrochromic-energy storage systems designed to visualize electrochemical charging and discharging processes.The conventional electrochromic-energy storage devices primarily integrated supercapacitors,known for their high power density,to enable rapid color contrast.However,the low energy density of supercapacitors restricts overall energy storage capacity,acting as a significant barrier to expanding the application range of such systems.In this review,we introduce electrochromic zinc(Zn)-ion battery systems,which effectively overcome the limitation of low energy density,and provide illustrative examples of their applicability across diverse fields.Although many recent research works are present for electrochromic Zn-ion batteries,little review has so far taken place.Our objective is to discuss on the current progress and future directions for electrochromic Zn-ion batteries,which are applicable for wearable electronics applications and energy storage systems.This review provides an initial milestone for future researchers in electrochromic energy storage and zinc-ion batteries,which will lead to a stream of future works related to them. 展开更多
关键词 Electrochromic zn-ion battery FLEXIBLE Transition metal oxide Conductive polymer
下载PDF
Fundamental Understanding of Hydrogen Evolution Reaction on Zinc Anode Surface:A First‑Principles Study
19
作者 Xiaoyu Liu Yiming Guo +6 位作者 Fanghua Ning Yuyu Liu Siqi Shi Qian Li Jiujun Zhang Shigang Lu Jin Yi 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期180-191,共12页
Hydrogen evolution reaction(HER)has become a key factor affecting the cycling stability of aqueous Zn-ion batteries,while the corresponding fundamental issues involving HER are still unclear.Herein,the reaction mechan... Hydrogen evolution reaction(HER)has become a key factor affecting the cycling stability of aqueous Zn-ion batteries,while the corresponding fundamental issues involving HER are still unclear.Herein,the reaction mechanisms of HER on various crystalline surfaces have been investigated by first-principle calculations based on density functional theory.It is found that the Volmer step is the ratelimiting step of HER on the Zn(002)and(100)surfaces,while,the reaction rates of HER on the Zn(101),(102)and(103)surfaces are determined by the Tafel step.Moreover,the correlation between HER activity and the generalized coordination number(CN)of Zn at the surfaces has been revealed.The relatively weaker HER activity on Zn(002)surface can be attributed to the higher CN of surface Zn atom.The atomically uneven Zn(002)surface shows significantly higher HER activity than the flat Zn(002)surface as the CN of the surface Zn atom is lowered.The CN of surface Zn atom is proposed as a key descriptor of HER activity.Tuning the CN of surface Zn atom would be a vital strategy to inhibit HER on the Zn anode surface based on the presented theoretical studies.Furthermore,this work provides a theoretical basis for the in-depth understanding of HER on the Zn surface. 展开更多
关键词 Aqueous zn-ion battery Zn anode Hydrogen evolution reaction Coordination number First-principles calculation
下载PDF
片层纤维V_(2)O_(5)·1.6H_(2)O干凝胶提升水系锌离子电池循环性能
20
作者 刘丹 崔月 +2 位作者 裴彪 高海燕 赵永男 《工程科学学报》 EI CSCD 北大核心 2024年第3期438-446,共9页
水系锌离子电池凭借低成本和环境友好的特点具有极大的发展和应用前景.具有高比表面、分层、或快速离子导体结构的钒基材料是锌离子电池最具有前景的正极材料之一.如何改善钒基材料的长循环性能是亟待解决的问题之一.本文采用溶胶凝胶... 水系锌离子电池凭借低成本和环境友好的特点具有极大的发展和应用前景.具有高比表面、分层、或快速离子导体结构的钒基材料是锌离子电池最具有前景的正极材料之一.如何改善钒基材料的长循环性能是亟待解决的问题之一.本文采用溶胶凝胶法并冷冻干燥成功制备了V_(2)O_(5)·1.6H_(2)O干凝胶,利用X射线衍射仪、扫描电子显微镜对其物相和形貌进行了表征,发现制备的材料为V_(2)O_(5)·1.6H_(2)O,结晶相良好,且成片状纤维大孔结构.电化学测试表明,在0.1 A·g^(–1)电流密度下,首次放电比容量为388.4 mA·h·g^(–1),循环1000次后容量仍保持为129.7 mA·h·g^(–1),具有良好的长循环稳定性.在0.1、0.2、0.5、1、2和3 A·g^(-1)电流密度下,纤维状V2O5干凝胶表现出良好的倍率性能,放电比容量分别为388.4、338.5、282.9、239.1、194.4和165.9 mA·h·g^(–1),远高于商业化V2O5 (279.5、251.0、205.5、174.5、144.6和125.1 mA·h·g^(–1)).良好的电化学性能主要归功于结合水的支撑作用增大了层间距,在循环过程中材料具有良好的结构稳定性,避免了放电容量衰减;同时纤维片状结构缩短了锌离子的迁移路径.对充放电机理研究发现,在锌离子的嵌入脱出过程中伴随有碱式硫酸锌的生成与消失,且该过程可逆. 展开更多
关键词 锌离子电池 V_(2)O_(5)·1.6H_(2)O 正极材料 长循环性能 机理探究
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部