The solar-driven catalytic conversion of CO2 to useful chemical fuels is regarded as an environmentally friendly approach to reduce the consumption of fossil fuels and mitigate the greenhouse effect.However,it is high...The solar-driven catalytic conversion of CO2 to useful chemical fuels is regarded as an environmentally friendly approach to reduce the consumption of fossil fuels and mitigate the greenhouse effect.However,it is highly intriguing and challenging to promote the selectivity and efficiency of visible-light-responsive photocatalysts that favor the adsorption of CO2 in photoreduction processes.In this work,three-dimensional hierarchical Cd0.8Zn0.2S flowers(C8Z2S-F)with ultrathin petals were successfully synthesized through an in-situ self-assembly growth process using sodium citrate as a morphology director.The flower-like Cd0.8Zn0.2S solid solution exhibited remarkable photocatalytic performance in the reduction of CO2,generating CO up to 41.4μmol g^−1 under visible-light illumination for 3 h;this was nearly three times greater than that of Cd0.8Zn0.2S nanoparticles(C8Z2S-NP)(14.7μmol g^−1).Particularly,a comparably high selectivity of 89.9%for the conversion of CO2 to CO,with a turnover number of 39.6,was obtained from the solar-driven C8Z2S-F system in the absence of any co-catalyst or sacrificial agent.Terahertz time-domain spectroscopy indicated that the introduction of flower structures enhanced the light-harvesting capacity of C8Z2S-F.The in situ diffuse reflectance infrared Fourier transform spectroscopy unveiled the existence of surface-adsorbed species and the conversion of photoreduction intermediates during the photocatalytic process.Empirical characterizations and predictions of the photocatalytic mechanism demonstrated that the flower-like Cd0.8Zn0.2S solid solution possessed desirable CO2 adsorption properties and an enhanced charge-transfer capability,thus providing a highly effective photocatalytic reduction of CO2.展开更多
In recent years,environmental pollution and energy crisis have become increasingly serious issues owing to the burning of fossil fuels.Among the many technologies,decomposition of water to produce hydrogen has attract...In recent years,environmental pollution and energy crisis have become increasingly serious issues owing to the burning of fossil fuels.Among the many technologies,decomposition of water to produce hydrogen has attracted much attention because of its sustainability and non-polluting characteristic.However,highly efficient decomposition of water that is driven by visible light is still a challenge.Herein,we report the large-scale preparation of step-scheme porous graphite carbon nitride/Zn0.2Cd0.8S-diethylenetriamine(Pg-C3N4/Zn0.2Cd0.8S-DETA)composite by a facile solvothermal method.It was found by UV-vis spectroscopy that 15%Pg-C3N4/Zn0.2Cd0.8S-DETA exhibited suitable visible absorption edge and band gap for water decomposition.The hydrogen production rate of 15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite was 6.69 mmol g^-1 h^-1,which was 16.73,1.61,and 1.44 times greater than those of Pg-C3N4,CdS-DETA,and Zn0.2Cd0.8S-DETA,respectively.In addition,15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite displayed excellent photocatalytic stability,which was maintained for seven cycles of photocatalytic water splitting test.We believe that 15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite can be a valuable guide for the development of solar hydrogen production applications in the near future.展开更多
Nanophosphor with the nominal composition of Ca0.8 Zn0.2 TiO3 : Pr3 + , Na^+ (CZTOPN) was synthesized at relatively low temperature by the sol-gel method. Metal ions were dispersed by citric acid in ethylene glyc...Nanophosphor with the nominal composition of Ca0.8 Zn0.2 TiO3 : Pr3 + , Na^+ (CZTOPN) was synthesized at relatively low temperature by the sol-gel method. Metal ions were dispersed by citric acid in ethylene glycol solvent and then react with Ti(OC4H9)4 to form sol and gel. The decomposition process of the precursor, and crystallization and particle size of CZTOPN were examined by thermal analysis (TG-DSC), powder X-ray diffraction (XRD), and scan election microscopy (SEM). Results of TG-DSC and XRD reveal that the composition of Ca0.8 Zn0.2 TiO3 : Pr3 + , Na^+ changes with the sintering temperature. SEM data indicate that the diameter of particles is under 50 nm even if the sintering temperature increases to 1000 ℃. In contrast to a solid state reaction, the excitation spectra of samples synthesized by the sol-gel method shift blue about 10 nm and the emission intensity at 617 nm increases significantly.展开更多
文摘The solar-driven catalytic conversion of CO2 to useful chemical fuels is regarded as an environmentally friendly approach to reduce the consumption of fossil fuels and mitigate the greenhouse effect.However,it is highly intriguing and challenging to promote the selectivity and efficiency of visible-light-responsive photocatalysts that favor the adsorption of CO2 in photoreduction processes.In this work,three-dimensional hierarchical Cd0.8Zn0.2S flowers(C8Z2S-F)with ultrathin petals were successfully synthesized through an in-situ self-assembly growth process using sodium citrate as a morphology director.The flower-like Cd0.8Zn0.2S solid solution exhibited remarkable photocatalytic performance in the reduction of CO2,generating CO up to 41.4μmol g^−1 under visible-light illumination for 3 h;this was nearly three times greater than that of Cd0.8Zn0.2S nanoparticles(C8Z2S-NP)(14.7μmol g^−1).Particularly,a comparably high selectivity of 89.9%for the conversion of CO2 to CO,with a turnover number of 39.6,was obtained from the solar-driven C8Z2S-F system in the absence of any co-catalyst or sacrificial agent.Terahertz time-domain spectroscopy indicated that the introduction of flower structures enhanced the light-harvesting capacity of C8Z2S-F.The in situ diffuse reflectance infrared Fourier transform spectroscopy unveiled the existence of surface-adsorbed species and the conversion of photoreduction intermediates during the photocatalytic process.Empirical characterizations and predictions of the photocatalytic mechanism demonstrated that the flower-like Cd0.8Zn0.2S solid solution possessed desirable CO2 adsorption properties and an enhanced charge-transfer capability,thus providing a highly effective photocatalytic reduction of CO2.
基金supported by the National Natural Science Foundation of China(51572103,51502106)the Distinguished Young Scholar of Anhui Province(1808085J14)+2 种基金the Foundation for Young Talents in College of Anhui Province(gxyqZD2017051)the Key Foundation of Educational Commission of Anhui Province(KJ2016SD53)Innovation Team of Design and Application of Advanced Energetic Materials(KJ2015TD003)~~
文摘In recent years,environmental pollution and energy crisis have become increasingly serious issues owing to the burning of fossil fuels.Among the many technologies,decomposition of water to produce hydrogen has attracted much attention because of its sustainability and non-polluting characteristic.However,highly efficient decomposition of water that is driven by visible light is still a challenge.Herein,we report the large-scale preparation of step-scheme porous graphite carbon nitride/Zn0.2Cd0.8S-diethylenetriamine(Pg-C3N4/Zn0.2Cd0.8S-DETA)composite by a facile solvothermal method.It was found by UV-vis spectroscopy that 15%Pg-C3N4/Zn0.2Cd0.8S-DETA exhibited suitable visible absorption edge and band gap for water decomposition.The hydrogen production rate of 15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite was 6.69 mmol g^-1 h^-1,which was 16.73,1.61,and 1.44 times greater than those of Pg-C3N4,CdS-DETA,and Zn0.2Cd0.8S-DETA,respectively.In addition,15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite displayed excellent photocatalytic stability,which was maintained for seven cycles of photocatalytic water splitting test.We believe that 15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite can be a valuable guide for the development of solar hydrogen production applications in the near future.
文摘Nanophosphor with the nominal composition of Ca0.8 Zn0.2 TiO3 : Pr3 + , Na^+ (CZTOPN) was synthesized at relatively low temperature by the sol-gel method. Metal ions were dispersed by citric acid in ethylene glycol solvent and then react with Ti(OC4H9)4 to form sol and gel. The decomposition process of the precursor, and crystallization and particle size of CZTOPN were examined by thermal analysis (TG-DSC), powder X-ray diffraction (XRD), and scan election microscopy (SEM). Results of TG-DSC and XRD reveal that the composition of Ca0.8 Zn0.2 TiO3 : Pr3 + , Na^+ changes with the sintering temperature. SEM data indicate that the diameter of particles is under 50 nm even if the sintering temperature increases to 1000 ℃. In contrast to a solid state reaction, the excitation spectra of samples synthesized by the sol-gel method shift blue about 10 nm and the emission intensity at 617 nm increases significantly.