This paper reports that ion implantation to a dose of 1 ×10^17 ions/cm^2 was performed on c-axis-orientated ZnO thin films deposited on (0001) sapphire substrates by the sol-gel technique. After ion implantatio...This paper reports that ion implantation to a dose of 1 ×10^17 ions/cm^2 was performed on c-axis-orientated ZnO thin films deposited on (0001) sapphire substrates by the sol-gel technique. After ion implantation, the as-implanted ZnO films were annealed in argon ambient at different temperatures from 600 - 900 ℃. The effects of ion implantation and post-implantation annealing on the structural and optical properties of the ZnO films were investigated by x-ray diffraction (XRD), photoluminescence (PL). It was found that the intensities of (002) peak and near band edge (NBE) exitonic ultraviolet emission increased with increasing annealing temperature from 600- 900 ℃. The defect related deep level emission (DLE) firstly increased with increasing annealing temperature from 600 - 750 ℃, and then decreased quickly with increasing annealing temperature. The recovery of the intensities of NBE and DLE occurs at ~850℃ and ~750℃ respectively. The relative PL intensity ratio of NBE to DLE showed that the quality of ZnO films increased continuously with increasing annealing temperature from 600 - 900 ℃.展开更多
Herein, high-quality n-ZnO film layer on c-sapphire and well-crystallized tetragonal p-BiOCl nanoflakes on Cu foil are prepared, respectively. According to the absorption spectra, the bandgaps of n-ZnO and p-BiOCl are...Herein, high-quality n-ZnO film layer on c-sapphire and well-crystallized tetragonal p-BiOCl nanoflakes on Cu foil are prepared, respectively. According to the absorption spectra, the bandgaps of n-ZnO and p-BiOCl are confirmed as ~3.3 and~3.5 eV, respectively. Subsequently, a p-BiOCl/n-ZnO heterostructural photodetector is constructed after a facile mechanical bonding and post annealing process. At –5 V bias, the photocurrent of the device under 350 nm irradiation is ~800 times higher than that in dark, which indicates its strong UV light response characteristic. However, the on/off ratio of In–ZnO–In photodetector is ~20 and the Cu–BiOCl–Cu photodetector depicts very weak UV light response. The heterostructure device also shows a short decay time of 0.95 s, which is much shorter than those of the devices fabricated from pure ZnO thin film and BiOCl nanoflakes. The p-BiOCl/n-ZnO heterojunction photodetector provides a promising pathway to multifunctional UV photodetectors with fast response, high signal-to-noise ratio, and high selectivity.展开更多
Zn1-xMgxO (x = 0, 0.18) thin films were fabricated on the copper substrates by radiofrequency magnetron sputtering using the high pure argon as a sputtering gas. The Zn1-xMgxO films were characterized by X-ray powde...Zn1-xMgxO (x = 0, 0.18) thin films were fabricated on the copper substrates by radiofrequency magnetron sputtering using the high pure argon as a sputtering gas. The Zn1-xMgxO films were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM) and galvanostatic tests. The electrochemical test showed an improved electrochemical performance of Zn0.82EMg0.18O thin film as an anode material for lithium ion batteries.展开更多
Silver nanocluster embedded ZnO composite thin film was observed to have an angle-sensitive and fast photovoltaic effect in the angle range from -90° to 90° , its peak value and the polarity varied regularly...Silver nanocluster embedded ZnO composite thin film was observed to have an angle-sensitive and fast photovoltaic effect in the angle range from -90° to 90° , its peak value and the polarity varied regularly with the angle of incidence of the 1.064-μm pulsed Nd:YAG laser radiation onto the ZnO surface. Meanwhile, for each photovoltaic signal, its rising time reached -2 ns with an open-circuit photovoltage of -2 ns full width at half-maximum. This angle-sensitive fast photovoltaic effect is expected to put this composite film a candidate for angle-sensitive and fast photodetector.展开更多
This paper reports the induced growth of high quality ZnO thin film by crystallized amorphous ZnO. Firstly amorphous ZnO was prepared by solid-state pyrolytic reaction, then by taking crystallized amorphous ZnO as see...This paper reports the induced growth of high quality ZnO thin film by crystallized amorphous ZnO. Firstly amorphous ZnO was prepared by solid-state pyrolytic reaction, then by taking crystallized amorphous ZnO as seeds (buffer layer), ZnO thin films have been grown in diethyene glycol solution of zinc acetate at 80 ℃. X-ray Diffraction curve indicates that the films were preferentially oriented [001] out-of-plane direction of the ZnO. Atomic force microscopy and scanning electron microscopy were used to evaluate the surface morphology of the ZnO thin film. Photoluminescence spectrum exhibits a strong ultraviolet emission while the visible emission is very weak. The results indicate that high quality ZnO thin film was obtained.展开更多
The grain boundaries (GBs) have a strong effect on the electric properties of ZnO thin film transistors (TFTs). A novel grain boundary model was developed to analyse the effect. The model was characterized with di...The grain boundaries (GBs) have a strong effect on the electric properties of ZnO thin film transistors (TFTs). A novel grain boundary model was developed to analyse the effect. The model was characterized with different angles between the orientation of the grain boundary and the channel direction. The potential barriers formed by the grain boundaries increase with the increase of the grain boundary angle, so the degradation of the transistor characteristics increases. When a grain boundary is close to the drain edge, the potential barrier height reduces, so the electric properties were improved.展开更多
Indium-doped ZnO thin films are deposited on quartz glass slides by RF magnetron sputtering at ambient temperature. The as-deposited films are annealed at different temperatures from 400℃ to 800 ℃ in air for 1 h. Tr...Indium-doped ZnO thin films are deposited on quartz glass slides by RF magnetron sputtering at ambient temperature. The as-deposited films are annealed at different temperatures from 400℃ to 800 ℃ in air for 1 h. Transmittance spectra are used to determine the optical parameters and the thicknesses of the films before and after annealing using a nonlinear programming method, and the effects of the annealing temperatures on the optical parameters and the thickness are investigated. The optical band gap is determined from the absorption coefficient. The calculated results show that the film thickness and optical parameters both increase first and then decrease with increasing annealing temperature from 400℃ to 800℃. The band gap of the as-deposited ZnO:In thin film is 3.28 eV, and it decreases to 3.17 eV after annealing at 400℃. Then the band gap increases from 3.17 eV to 3.23 eV with increasing annealing temperature from 400℃ to 800℃.展开更多
ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-r...ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-ray diffraction results confirm that the ZnO thin films co-doped with Al distortion, and the biaxial stresses are 1.03× 10^8. 3.26× 10^8 and Sb are of wurtzite hexagonal ZnO with a very small 5.23 × 10^8, and 6.97× 10^8 Pa, corresponding to those of the ZnO thin films co-doped with Al and Sb in concentrations of 1.5, 3.0, 4.5, 6.0 at% respectively. The optical properties reveal that the ZnO thin films co-doped with Al and Sb have obviously enhanced transmittance in the visible region. The electrical properties show that ZnO thin film co-doped with Al and Sb in a concentration of 1.5 at% has a lowest resistivity of 2.5 Ω·cm.展开更多
Transparent zinc oxide(ZnO) thin films are fabricated by a simple sol-gel spin-coating technique on glass substrates with different solution concentrations(0.3-1.2 M) using zinc acetate dehydrate [Zn(CH_3COO)_2&...Transparent zinc oxide(ZnO) thin films are fabricated by a simple sol-gel spin-coating technique on glass substrates with different solution concentrations(0.3-1.2 M) using zinc acetate dehydrate [Zn(CH_3COO)_2·2H_2O] as precursor and isopropanol and monoethanolamine(MEA) as solvent and stabilizer, respectively. The molar ratio of zinc acetate dehydrate to MEA is 1.0. X-ray diffraction, ultraviolet-visible spectroscopy and photoluminescence spectroscopy are employed to investigate the effect of solution concentration on the structural and optical properties of the ZnO thin films. The obtained results of all thin films are discussed in detail and are compared with other experimental data.展开更多
Transparent thin films of ZnO have been prepared on ordinary glass substrates by the inorganic sol-gel method using citric acid as chelating agent and zinc nitrate as the starting material. A novel structure on zinc c...Transparent thin films of ZnO have been prepared on ordinary glass substrates by the inorganic sol-gel method using citric acid as chelating agent and zinc nitrate as the starting material. A novel structure on zinc citrate complex was put forward by using DTA-TG and FT-IR absorbanee spectrum of citrate gels. Phase formation, morphology and optical properties of ZnO films are investigated by XRD, AFM and UV-vis transmittance spectra. The experimental results show that ZnO thin films derived from zinc citrate sol-gel method showed a (002) oriented hexagonal wurtzite structure, good crystalline property, a uniform range of grain size (40 nm), smooth surface of films, band gap of 3.28 eV and optical transmittances ratio over 90% in the visible range.展开更多
Zinc oxide (ZnO) thin films were identified as very suitable piezoelectric material for SAW on the basis of its relatively high electromechanical coupling coefficient,as well as high resistivity for low insertion loss...Zinc oxide (ZnO) thin films were identified as very suitable piezoelectric material for SAW on the basis of its relatively high electromechanical coupling coefficient,as well as high resistivity for low insertion loss and little distortion in the frequency.In this paper ZnO thin films were deposited on Si(100) substrate covered with SiO_2 using a reactive DC magnetic sputtering system from a zinc target.The effects of various deposition parameters on structural and performances have been investigated through experiments.Theoretical and experimental results are also discussed in this paper.XRD showed that the prepared ZnO films had strongly c-axis preferred-orientation.The composition of the film was also determined through high-resolution photoelectron spectroscopy (XPS).AFM showed that the films had smooth surface and that the crystallite sizes of deposited films were in the range 30 nm~50 nm.The above results showed that the films deposited by magnetic sputtering met the demands for surface acoustic wave (SAW) devices.展开更多
ZnO thin films doped with different Cu concentrations are fabricated by reactive magnetron sputtering technique. XRD analysis indicates that the crystal quality of the ZnO:Cu film can be enhanced by a moderate level ...ZnO thin films doped with different Cu concentrations are fabricated by reactive magnetron sputtering technique. XRD analysis indicates that the crystal quality of the ZnO:Cu film can be enhanced by a moderate level of Cu-doping in the sputtering process. The results of XPS spectra of zinc, oxygen, and copper elements show that Cu-doping has an evident and complicated effect on the chemical state of oxygen, but little effect on those of zinc and copper. Interestingly, further investigation of the optical properties of ZnO:Cu samples shows that the transmittance spectra exhibit both red shift and blue shift with the increase of Cu doping, in contrast to the simple monotonic behavior of the Burstein–Moss effect. Analysis reveals that this is due to the competition between oxygen vacancies and intrinsic and surface states of oxygen in the sample. Our result may suggest an effective way of tuning the bandgap of ZnO samples.展开更多
An epitaxial ZnO thin film was entirely fabricated by pulsed laser deposition. Both the orientation and the size of the crystallites were studied. The X-ray diffraction (XRD) patterns of the film show strong c-axis ...An epitaxial ZnO thin film was entirely fabricated by pulsed laser deposition. Both the orientation and the size of the crystallites were studied. The X-ray diffraction (XRD) patterns of the film show strong c-axis oriented crystal structure with preferred (002) orientation. The Phi-sca~ XRD pattern confirms that the epitaxiM ZnO exhibits a single- domain wurtzite structure with hexagonal symmetry. In situ high-temperature XRD studies of ZnO thin film show that the crystallite size increases with increasing temperature, and (002) peaks shift systematically toward lower 20 values due to the change of lattice parameters. The lattice parameters show linear increase in their values with increasing temperature.展开更多
Sb-doped ZnO thin films with different values of Sb content (from 0 to 1.1 at.%) are deposited by the sol-gel dip- coating method under different sol concentrations. The effects of Sb-doping content, sol concentrati...Sb-doped ZnO thin films with different values of Sb content (from 0 to 1.1 at.%) are deposited by the sol-gel dip- coating method under different sol concentrations. The effects of Sb-doping content, sol concentration, and annealing ambient on the structural, optical, and electrical properties of ZnO films are investigated. The results of the X-ray diffraction and ultraviolet-visible spectroscopy (UV-VIS) spectrophotometer indicate that each of all the films retains the wurtzite ZnO structure and possesses a preferred orientation along the c axis, with high transmittance (〉 90%) in the visible range. The Hall effect measurements show that the vacuum annealed thin films synthesized in the sol concentration of 0.75 mol/L each have an adjustable n-type electrical conductivity by varying Sb-doping density, and the photoluminescence (PL) spectra revealed that the defect emission (around 450 nm) is predominant. However, the thin films prepared by the sol with a concentration of 0.25 mol/L, despite their poor conductivity, have priority in ultraviolet emission, and the PL peak position shows first a blue-shift and then a red-shift with the increase of the Sb doping content.展开更多
Photocatalytic ZnO thin films have been deposited onto glass substrate by spray pyrolysis technique. The sprayed solution consists of 0.1 M of zinc acetate dihydrate dissolved in double distilled water and sprays onto...Photocatalytic ZnO thin films have been deposited onto glass substrate by spray pyrolysis technique. The sprayed solution consists of 0.1 M of zinc acetate dihydrate dissolved in double distilled water and sprays onto ultrasonically cleaned glass substrates maintained at 350°C, through an air-atomizing nozzle. The X-ray diffraction (XRD), scanning electron microscopy (SEM), EDX and UV-VIS spectrophotometer were applied to describe the structural, morphological, compositional and optical properties of ZnO catalyst. XRD analysis confirms that the films were found to be single phase hexagonal wurtzite structure. The SEM micrograph of the films is shown highly uniform, crack free and found to be fiber like structures. The optical transmittance spectra of the ZnO thin films were found to be transparent to visible light and the average optical transmittance was greater than 85%. The direct optical band gap energy values of the films shift towards the lower energy as a consequence of the thermal annealing. The Urbach energy of the films was found to increase with annealing temperature. The refractive index of the films was calculated and the refractive index dispersion curve of the films obeys the single oscillator model. The values of oscillatory energy E<sub>o</sub>, dispersion energy E<sub>d</sub>, and static dielectric constant ε<sub>s</sub> for the ZnO thin films were determined. The films were evaluated for their ability to degrade methylene blue. The Langmuir-Hinshelwood kinetic model was used to interpret quantitatively the observed kinetic experimental result. The photocatalytic activity of ZnO thin films was enhanced by annealing temperature.展开更多
This paper reports a piezoelectric nanogenerator(NG) with a thickness of approximately 80 μm for miniaturized self-powered acceleration sensors. To deposit the piezoelectric zinc oxide(ZnO) thin film, a magnetron spu...This paper reports a piezoelectric nanogenerator(NG) with a thickness of approximately 80 μm for miniaturized self-powered acceleration sensors. To deposit the piezoelectric zinc oxide(ZnO) thin film, a magnetron sputtering machine was used. Polymethyl methacrylate(PMMA) and aluminum-doped zinc oxide(AZO) were used as the insulating layer and the top electrode of the NG, respectively. The experimental results show that the ZnO thin films annealed at 150℃ exhibited the highest crystallinity among the prepared films and an optical band gap of 3.24 eV. The NG fabricated with an AZO/PMMA/ZnO/stainless steel configuration exhibited a higher output voltage than the device with an AZO/ZnO/PMMA/stainless steel configuration. In addition, the annealing temperature affected the open-circuit voltage of the NGs;the output voltage reached 3.81 V when the annealing temperature was 150℃. The open-circuit voltage of the prepared self-powered accelerometer increased linearly with acceleration. In addition, the small NG-based accelerometer, which exhibited excellent fatigue resistance, can be used for acceleration measurements of small and lightweight devices.展开更多
In this work, ZnO thin films were derived by sol-gel using two different techniques;dip coating and spin coating technique. The films were deposited onto glass substrate at room temperature using sol-gel composed from...In this work, ZnO thin films were derived by sol-gel using two different techniques;dip coating and spin coating technique. The films were deposited onto glass substrate at room temperature using sol-gel composed from zinc acetate dehydrate, monoethanolamine, isopropanole, and de-ionized water, the films were preheated at 225?C for 15 min. The crystallographic structures of ZnO films were investigated using X-ray diffraction (XRD);the result shows that the good film was prepared at dip coating technique, it was polycrystalline and highly c-orientation along (002) plane, the lattice constant ratio (c/a) was calculated at (002), it was about 1.56. The structure of thin films, prepared by spin coating technique, was amorphous with low intensity and wide peaks. The optical properties of the prepared film were studied using UV-VIS spectrophotometer with the range 190 - 850 nm, and by using the fluorescence spectrometer. The optical characterization of ZnO thin films that were prepared by the dip coating method have good transmittance of about 92% in the visible region, it can be noted from the fluorescence spectrometer two broad visible emission bands centered at 380nm and 430 nm. The optical energy gaps for the direct and indirect allowed transitions were calculated, the values were equal 3.2 eV and 3.1 eV respectively. Dip coating technique create ZnO films with potential for application as transparent electrodes in optoelectronic devices such as solar cell.展开更多
Polycrystalline zinc oxide (ZnO) thin films have been deposited at 450°C onto glass and silicon substrates by pulsed laser deposition technique (PLD). The used source was a KrF excimer laser (248 nm, 25 ns, 5 Hz,...Polycrystalline zinc oxide (ZnO) thin films have been deposited at 450°C onto glass and silicon substrates by pulsed laser deposition technique (PLD). The used source was a KrF excimer laser (248 nm, 25 ns, 5 Hz, 2 J/cm2). The effects of glass and silicon substrates on structural and optical properties of ZnO films have been investigated. X-ray diffraction patterns showed that ZnO films are polycrystalline with a hexagonal wurtzite—type structure with a strong (103) orientation and have a good crystallinity on monocrystalline Si(100) substrate. The thickness and compositional depth profile were studied by Rutherford Backscattering spectrometry (RBS). The average transmittance of ZnO films deposited on glass substrate in the visible range is 70%.展开更多
Al-doped zinc oxide(AZO) and Ga-doped zinc oxide(GZO) thin films with the same doping concentration(3.6 at%) were deposited on glass substrates at room temperature by direct current(DC) magnetron sputtering.Co...Al-doped zinc oxide(AZO) and Ga-doped zinc oxide(GZO) thin films with the same doping concentration(3.6 at%) were deposited on glass substrates at room temperature by direct current(DC) magnetron sputtering.Consequently,we comparatively studied the doped thin films on the basis of their structural,morphological,electrical,and optical properties for optoelectronic applications.Both thin films exhibited excellent optical properties with more than 85%transmission in the visible range.The GZO thin film had better crystallinity and smoother surface morphology than the AZO thin film.The conductivity of the GZO thin film was improved compared to that of the AZO thin film:the resistivity decreased from 1.01×10^-3 to 3.5×10^-4 Ω cm,which was mostly due to the increase of the carrier concentration from 6.5×10^20 to 1.46×10^21cm^-3.These results revealed that the GZO thin film had higher quality than the AZO thin film with the same doping concentration for optoelectronic applications.展开更多
Layers of transparent and conductive Sn-doped zinc oxide (ZnO) have been prepared using chemical reactive liquid phase (spray) method on glass substrates. X-ray diffraction analysis shows that the obtained layers show...Layers of transparent and conductive Sn-doped zinc oxide (ZnO) have been prepared using chemical reactive liquid phase (spray) method on glass substrates. X-ray diffraction analysis shows that the obtained layers show preferential grains orientation along the direction (002). Microstructural analysis indicates that the thickness of the deposited films is independent of Sn content, i.e. 408 nm, and that the average grain size increases with increasing Sn content, ranging from 31 nm to 42 nm. The value of the optical gap obtained using UV-visible transmission spectroscopy method increases slightly from 3.1 eV to 3.3 eV. Moreover, transmission curves reveal that the prepared thin films are transparent in the visible domain.展开更多
文摘This paper reports that ion implantation to a dose of 1 ×10^17 ions/cm^2 was performed on c-axis-orientated ZnO thin films deposited on (0001) sapphire substrates by the sol-gel technique. After ion implantation, the as-implanted ZnO films were annealed in argon ambient at different temperatures from 600 - 900 ℃. The effects of ion implantation and post-implantation annealing on the structural and optical properties of the ZnO films were investigated by x-ray diffraction (XRD), photoluminescence (PL). It was found that the intensities of (002) peak and near band edge (NBE) exitonic ultraviolet emission increased with increasing annealing temperature from 600- 900 ℃. The defect related deep level emission (DLE) firstly increased with increasing annealing temperature from 600 - 750 ℃, and then decreased quickly with increasing annealing temperature. The recovery of the intensities of NBE and DLE occurs at ~850℃ and ~750℃ respectively. The relative PL intensity ratio of NBE to DLE showed that the quality of ZnO films increased continuously with increasing annealing temperature from 600 - 900 ℃.
基金supported by the National Natural Science Foundation of China (Grant No. 61705043, 51872050 and11811530065)the National Key Research and Development Program of China (Grant No. 2017YFA0204600)+2 种基金the Natural Science Foundation of Jiangsu Province (No. BK20160568)National Postdoctoral Science Foundation of China (Grant No.2017M611411, 2018M640338, 2018T110344 and2019T120299)the Ministry of Education Joint Fund for Equipment Pre-Research (6141A02033241)。
文摘Herein, high-quality n-ZnO film layer on c-sapphire and well-crystallized tetragonal p-BiOCl nanoflakes on Cu foil are prepared, respectively. According to the absorption spectra, the bandgaps of n-ZnO and p-BiOCl are confirmed as ~3.3 and~3.5 eV, respectively. Subsequently, a p-BiOCl/n-ZnO heterostructural photodetector is constructed after a facile mechanical bonding and post annealing process. At –5 V bias, the photocurrent of the device under 350 nm irradiation is ~800 times higher than that in dark, which indicates its strong UV light response characteristic. However, the on/off ratio of In–ZnO–In photodetector is ~20 and the Cu–BiOCl–Cu photodetector depicts very weak UV light response. The heterostructure device also shows a short decay time of 0.95 s, which is much shorter than those of the devices fabricated from pure ZnO thin film and BiOCl nanoflakes. The p-BiOCl/n-ZnO heterojunction photodetector provides a promising pathway to multifunctional UV photodetectors with fast response, high signal-to-noise ratio, and high selectivity.
基金Financially supported by the Knowledge Innovation Program of Chinese Academy of Sciences, NNSFC (20831004 and 20771101)CAS Directional Program (No. KJCXZ-YW-M05)a funding from FJIRSM (SZD08002-3)
文摘Zn1-xMgxO (x = 0, 0.18) thin films were fabricated on the copper substrates by radiofrequency magnetron sputtering using the high pure argon as a sputtering gas. The Zn1-xMgxO films were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM) and galvanostatic tests. The electrochemical test showed an improved electrochemical performance of Zn0.82EMg0.18O thin film as an anode material for lithium ion batteries.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60877038,50672132,60778034 and 10804077)Program for New Century Excellent Talents in University,Research Fund for the Doctoral Program of the Higher Education of China(Grant No.200804250006)+1 种基金Key Project of the Chinese Ministry of Education(Grant No.107020)the Natural Science Foundation of Beijing(Grant No.4082026)
文摘Silver nanocluster embedded ZnO composite thin film was observed to have an angle-sensitive and fast photovoltaic effect in the angle range from -90° to 90° , its peak value and the polarity varied regularly with the angle of incidence of the 1.064-μm pulsed Nd:YAG laser radiation onto the ZnO surface. Meanwhile, for each photovoltaic signal, its rising time reached -2 ns with an open-circuit photovoltage of -2 ns full width at half-maximum. This angle-sensitive fast photovoltaic effect is expected to put this composite film a candidate for angle-sensitive and fast photodetector.
基金Project supported by the "863" High Technology Research Program in China (Grant No 2001AA311120), the National Natural Science Foundation of China (Grant No 60278031), the Innovation Project of Chinese Academy of Sciences, the Jilin Province Science and Technology Development Program Project of China (Grant No 20040564) and the Young Innovation Function of the Changchun Institute of 0ptics, Fine Mechanics and Physics, Chinese Academy of Sciences (Grant No Q03M23Z).
文摘This paper reports the induced growth of high quality ZnO thin film by crystallized amorphous ZnO. Firstly amorphous ZnO was prepared by solid-state pyrolytic reaction, then by taking crystallized amorphous ZnO as seeds (buffer layer), ZnO thin films have been grown in diethyene glycol solution of zinc acetate at 80 ℃. X-ray Diffraction curve indicates that the films were preferentially oriented [001] out-of-plane direction of the ZnO. Atomic force microscopy and scanning electron microscopy were used to evaluate the surface morphology of the ZnO thin film. Photoluminescence spectrum exhibits a strong ultraviolet emission while the visible emission is very weak. The results indicate that high quality ZnO thin film was obtained.
基金supported by the National Natural Science Foundation of China (Grant Nos 50677014,50602014 and 10874042)the National High Technology Joint Research Program of China (Grant No 2006AA04A104)the Science-Technology Foundation of Hunan Province of China (Grant Nos 2008RS4003 and 07jj107)
文摘The grain boundaries (GBs) have a strong effect on the electric properties of ZnO thin film transistors (TFTs). A novel grain boundary model was developed to analyse the effect. The model was characterized with different angles between the orientation of the grain boundary and the channel direction. The potential barriers formed by the grain boundaries increase with the increase of the grain boundary angle, so the degradation of the transistor characteristics increases. When a grain boundary is close to the drain edge, the potential barrier height reduces, so the electric properties were improved.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50942021 and 11075314)the Fundamental Research Fund for the Central Universities (Grant No. CDJXS10102207)
文摘Indium-doped ZnO thin films are deposited on quartz glass slides by RF magnetron sputtering at ambient temperature. The as-deposited films are annealed at different temperatures from 400℃ to 800 ℃ in air for 1 h. Transmittance spectra are used to determine the optical parameters and the thicknesses of the films before and after annealing using a nonlinear programming method, and the effects of the annealing temperatures on the optical parameters and the thickness are investigated. The optical band gap is determined from the absorption coefficient. The calculated results show that the film thickness and optical parameters both increase first and then decrease with increasing annealing temperature from 400℃ to 800℃. The band gap of the as-deposited ZnO:In thin film is 3.28 eV, and it decreases to 3.17 eV after annealing at 400℃. Then the band gap increases from 3.17 eV to 3.23 eV with increasing annealing temperature from 400℃ to 800℃.
基金Project supported by the Innovation Foundation of Beijing University of Aeronautics and Astronautics for PhD Graduates, China (Grant No. 292122)the Equipment Research Foundation of China (Grant No. 373974)
文摘ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-ray diffraction results confirm that the ZnO thin films co-doped with Al distortion, and the biaxial stresses are 1.03× 10^8. 3.26× 10^8 and Sb are of wurtzite hexagonal ZnO with a very small 5.23 × 10^8, and 6.97× 10^8 Pa, corresponding to those of the ZnO thin films co-doped with Al and Sb in concentrations of 1.5, 3.0, 4.5, 6.0 at% respectively. The optical properties reveal that the ZnO thin films co-doped with Al and Sb have obviously enhanced transmittance in the visible region. The electrical properties show that ZnO thin film co-doped with Al and Sb in a concentration of 1.5 at% has a lowest resistivity of 2.5 Ω·cm.
文摘Transparent zinc oxide(ZnO) thin films are fabricated by a simple sol-gel spin-coating technique on glass substrates with different solution concentrations(0.3-1.2 M) using zinc acetate dehydrate [Zn(CH_3COO)_2·2H_2O] as precursor and isopropanol and monoethanolamine(MEA) as solvent and stabilizer, respectively. The molar ratio of zinc acetate dehydrate to MEA is 1.0. X-ray diffraction, ultraviolet-visible spectroscopy and photoluminescence spectroscopy are employed to investigate the effect of solution concentration on the structural and optical properties of the ZnO thin films. The obtained results of all thin films are discussed in detail and are compared with other experimental data.
基金Supported by the Natural Science Foundation of Hebei Province(B2008000758) and Overseas Training for Outstanding Experts in Hebei Province
文摘Transparent thin films of ZnO have been prepared on ordinary glass substrates by the inorganic sol-gel method using citric acid as chelating agent and zinc nitrate as the starting material. A novel structure on zinc citrate complex was put forward by using DTA-TG and FT-IR absorbanee spectrum of citrate gels. Phase formation, morphology and optical properties of ZnO films are investigated by XRD, AFM and UV-vis transmittance spectra. The experimental results show that ZnO thin films derived from zinc citrate sol-gel method showed a (002) oriented hexagonal wurtzite structure, good crystalline property, a uniform range of grain size (40 nm), smooth surface of films, band gap of 3.28 eV and optical transmittances ratio over 90% in the visible range.
文摘Zinc oxide (ZnO) thin films were identified as very suitable piezoelectric material for SAW on the basis of its relatively high electromechanical coupling coefficient,as well as high resistivity for low insertion loss and little distortion in the frequency.In this paper ZnO thin films were deposited on Si(100) substrate covered with SiO_2 using a reactive DC magnetic sputtering system from a zinc target.The effects of various deposition parameters on structural and performances have been investigated through experiments.Theoretical and experimental results are also discussed in this paper.XRD showed that the prepared ZnO films had strongly c-axis preferred-orientation.The composition of the film was also determined through high-resolution photoelectron spectroscopy (XPS).AFM showed that the films had smooth surface and that the crystallite sizes of deposited films were in the range 30 nm~50 nm.The above results showed that the films deposited by magnetic sputtering met the demands for surface acoustic wave (SAW) devices.
基金Project supported by the Natural Science Foundation of Gansu Province, China (Grant No. 0803RJZA008)the Fundamental Research Funds for the Central Universities, China (Grant No. zyz2012057)+1 种基金the National Natural Science Foundation of China (Grant No. 11004141)the Program for New Century Excellent Talents in University, China (Grant No. 11-0351)
文摘ZnO thin films doped with different Cu concentrations are fabricated by reactive magnetron sputtering technique. XRD analysis indicates that the crystal quality of the ZnO:Cu film can be enhanced by a moderate level of Cu-doping in the sputtering process. The results of XPS spectra of zinc, oxygen, and copper elements show that Cu-doping has an evident and complicated effect on the chemical state of oxygen, but little effect on those of zinc and copper. Interestingly, further investigation of the optical properties of ZnO:Cu samples shows that the transmittance spectra exhibit both red shift and blue shift with the increase of Cu doping, in contrast to the simple monotonic behavior of the Burstein–Moss effect. Analysis reveals that this is due to the competition between oxygen vacancies and intrinsic and surface states of oxygen in the sample. Our result may suggest an effective way of tuning the bandgap of ZnO samples.
基金Project supported by the National Natural Science Foundation of China (Grant No.10490192)
文摘An epitaxial ZnO thin film was entirely fabricated by pulsed laser deposition. Both the orientation and the size of the crystallites were studied. The X-ray diffraction (XRD) patterns of the film show strong c-axis oriented crystal structure with preferred (002) orientation. The Phi-sca~ XRD pattern confirms that the epitaxiM ZnO exhibits a single- domain wurtzite structure with hexagonal symmetry. In situ high-temperature XRD studies of ZnO thin film show that the crystallite size increases with increasing temperature, and (002) peaks shift systematically toward lower 20 values due to the change of lattice parameters. The lattice parameters show linear increase in their values with increasing temperature.
基金Project supported by the National Natural Science Foundation of China(Grant No.51172186)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20106102120051)the Natural Science Basic Research Plan in Shaanxi Province,China(Grant No.2013JQ6019)
文摘Sb-doped ZnO thin films with different values of Sb content (from 0 to 1.1 at.%) are deposited by the sol-gel dip- coating method under different sol concentrations. The effects of Sb-doping content, sol concentration, and annealing ambient on the structural, optical, and electrical properties of ZnO films are investigated. The results of the X-ray diffraction and ultraviolet-visible spectroscopy (UV-VIS) spectrophotometer indicate that each of all the films retains the wurtzite ZnO structure and possesses a preferred orientation along the c axis, with high transmittance (〉 90%) in the visible range. The Hall effect measurements show that the vacuum annealed thin films synthesized in the sol concentration of 0.75 mol/L each have an adjustable n-type electrical conductivity by varying Sb-doping density, and the photoluminescence (PL) spectra revealed that the defect emission (around 450 nm) is predominant. However, the thin films prepared by the sol with a concentration of 0.25 mol/L, despite their poor conductivity, have priority in ultraviolet emission, and the PL peak position shows first a blue-shift and then a red-shift with the increase of the Sb doping content.
文摘Photocatalytic ZnO thin films have been deposited onto glass substrate by spray pyrolysis technique. The sprayed solution consists of 0.1 M of zinc acetate dihydrate dissolved in double distilled water and sprays onto ultrasonically cleaned glass substrates maintained at 350°C, through an air-atomizing nozzle. The X-ray diffraction (XRD), scanning electron microscopy (SEM), EDX and UV-VIS spectrophotometer were applied to describe the structural, morphological, compositional and optical properties of ZnO catalyst. XRD analysis confirms that the films were found to be single phase hexagonal wurtzite structure. The SEM micrograph of the films is shown highly uniform, crack free and found to be fiber like structures. The optical transmittance spectra of the ZnO thin films were found to be transparent to visible light and the average optical transmittance was greater than 85%. The direct optical band gap energy values of the films shift towards the lower energy as a consequence of the thermal annealing. The Urbach energy of the films was found to increase with annealing temperature. The refractive index of the films was calculated and the refractive index dispersion curve of the films obeys the single oscillator model. The values of oscillatory energy E<sub>o</sub>, dispersion energy E<sub>d</sub>, and static dielectric constant ε<sub>s</sub> for the ZnO thin films were determined. The films were evaluated for their ability to degrade methylene blue. The Langmuir-Hinshelwood kinetic model was used to interpret quantitatively the observed kinetic experimental result. The photocatalytic activity of ZnO thin films was enhanced by annealing temperature.
基金supported by the National Natural Science Foundation of China (No. 61671017)Key Project of Excellent Youth Talent Support Program in Colleges and Universities of Anhui Province (No. gxyqZD2018004)+1 种基金Provincial Natural Science Foundation of Anhui Higher Education Institution of China (No. KJ2016A787)Anhui Provincial Natural Science Foundation of China (No. 1508085ME72)
文摘This paper reports a piezoelectric nanogenerator(NG) with a thickness of approximately 80 μm for miniaturized self-powered acceleration sensors. To deposit the piezoelectric zinc oxide(ZnO) thin film, a magnetron sputtering machine was used. Polymethyl methacrylate(PMMA) and aluminum-doped zinc oxide(AZO) were used as the insulating layer and the top electrode of the NG, respectively. The experimental results show that the ZnO thin films annealed at 150℃ exhibited the highest crystallinity among the prepared films and an optical band gap of 3.24 eV. The NG fabricated with an AZO/PMMA/ZnO/stainless steel configuration exhibited a higher output voltage than the device with an AZO/ZnO/PMMA/stainless steel configuration. In addition, the annealing temperature affected the open-circuit voltage of the NGs;the output voltage reached 3.81 V when the annealing temperature was 150℃. The open-circuit voltage of the prepared self-powered accelerometer increased linearly with acceleration. In addition, the small NG-based accelerometer, which exhibited excellent fatigue resistance, can be used for acceleration measurements of small and lightweight devices.
文摘In this work, ZnO thin films were derived by sol-gel using two different techniques;dip coating and spin coating technique. The films were deposited onto glass substrate at room temperature using sol-gel composed from zinc acetate dehydrate, monoethanolamine, isopropanole, and de-ionized water, the films were preheated at 225?C for 15 min. The crystallographic structures of ZnO films were investigated using X-ray diffraction (XRD);the result shows that the good film was prepared at dip coating technique, it was polycrystalline and highly c-orientation along (002) plane, the lattice constant ratio (c/a) was calculated at (002), it was about 1.56. The structure of thin films, prepared by spin coating technique, was amorphous with low intensity and wide peaks. The optical properties of the prepared film were studied using UV-VIS spectrophotometer with the range 190 - 850 nm, and by using the fluorescence spectrometer. The optical characterization of ZnO thin films that were prepared by the dip coating method have good transmittance of about 92% in the visible region, it can be noted from the fluorescence spectrometer two broad visible emission bands centered at 380nm and 430 nm. The optical energy gaps for the direct and indirect allowed transitions were calculated, the values were equal 3.2 eV and 3.1 eV respectively. Dip coating technique create ZnO films with potential for application as transparent electrodes in optoelectronic devices such as solar cell.
文摘Polycrystalline zinc oxide (ZnO) thin films have been deposited at 450°C onto glass and silicon substrates by pulsed laser deposition technique (PLD). The used source was a KrF excimer laser (248 nm, 25 ns, 5 Hz, 2 J/cm2). The effects of glass and silicon substrates on structural and optical properties of ZnO films have been investigated. X-ray diffraction patterns showed that ZnO films are polycrystalline with a hexagonal wurtzite—type structure with a strong (103) orientation and have a good crystallinity on monocrystalline Si(100) substrate. The thickness and compositional depth profile were studied by Rutherford Backscattering spectrometry (RBS). The average transmittance of ZnO films deposited on glass substrate in the visible range is 70%.
基金Funded by National Natural Science Foundation of China(NSFC)(Nos.21205127,61275114)
文摘Al-doped zinc oxide(AZO) and Ga-doped zinc oxide(GZO) thin films with the same doping concentration(3.6 at%) were deposited on glass substrates at room temperature by direct current(DC) magnetron sputtering.Consequently,we comparatively studied the doped thin films on the basis of their structural,morphological,electrical,and optical properties for optoelectronic applications.Both thin films exhibited excellent optical properties with more than 85%transmission in the visible range.The GZO thin film had better crystallinity and smoother surface morphology than the AZO thin film.The conductivity of the GZO thin film was improved compared to that of the AZO thin film:the resistivity decreased from 1.01×10^-3 to 3.5×10^-4 Ω cm,which was mostly due to the increase of the carrier concentration from 6.5×10^20 to 1.46×10^21cm^-3.These results revealed that the GZO thin film had higher quality than the AZO thin film with the same doping concentration for optoelectronic applications.
文摘Layers of transparent and conductive Sn-doped zinc oxide (ZnO) have been prepared using chemical reactive liquid phase (spray) method on glass substrates. X-ray diffraction analysis shows that the obtained layers show preferential grains orientation along the direction (002). Microstructural analysis indicates that the thickness of the deposited films is independent of Sn content, i.e. 408 nm, and that the average grain size increases with increasing Sn content, ranging from 31 nm to 42 nm. The value of the optical gap obtained using UV-visible transmission spectroscopy method increases slightly from 3.1 eV to 3.3 eV. Moreover, transmission curves reveal that the prepared thin films are transparent in the visible domain.