In the study, we observed the strong adsorption of CdTe/CdS QDs to antibodies and the formation of QDs-antibodies conjugates. Capillary electrophoresis with laser-induced fluorescence detection (CE-LIF), fluorescenc...In the study, we observed the strong adsorption of CdTe/CdS QDs to antibodies and the formation of QDs-antibodies conjugates. Capillary electrophoresis with laser-induced fluorescence detection (CE-LIF), fluorescence spectrometry and fluorescence correlation spectroscopy (FCS) were used to characterize the QDs conjugates with antibody. We found that the QDs-antibody conjugates possessed high fluorescence, small hydrodynamic radii and good stability in aqueous solution. 2009 Ji Cun Ren. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
Novel CdTe/CdS quantum dots(QDs)coated with a hybrid of SiO_2 and ZnS were fabricated through a simple two-step approach.The hybrid SiO_2/ZnS coated CdTe/CdS quantum dots was characterized by transmission electron mic...Novel CdTe/CdS quantum dots(QDs)coated with a hybrid of SiO_2 and ZnS were fabricated through a simple two-step approach.The hybrid SiO_2/ZnS coated CdTe/CdS quantum dots was characterized by transmission electron microscopy(TEM),UV and fluorescence spectrometer.Results indicated that the core-shell structure gave the QDs outstanding photoluminescence properties,includinganarrowphotoluminescencespectrum,high photoluminescence(PL)quantum yield and long emission lifetime(average PL lifetime of increased from 26.4 ns to 49.1 ns).Cellular studies showed the QDs had good cytocompatibility with Hela cells as determined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide(MTT)assay after coating SiO_2/ZnS,and also proved the feasibility of using the hybrid SiO_2/ZnS coated QDs as optical probes for in vitro cell imaging.The synthesis method of QDs is highly promising for the production of robust and functional optical probes for bio-imaging and sensing applications.展开更多
The surface characteristics of ZnO were synthetically optimized by a self-designed simultaneous etching and W-doping hydrothermal method utilizing as-prepared ZnO nanorod(NR)array films as the template.Benefiting from...The surface characteristics of ZnO were synthetically optimized by a self-designed simultaneous etching and W-doping hydrothermal method utilizing as-prepared ZnO nanorod(NR)array films as the template.Benefiting from the etching and regrowth process and the different structural stabilities of the various faces of ZnO NRs,the uniquely etched and W-doped ZnO(EWZ)nanotube(NT)array films with larger surface area,more active sites and better energy band structure were used to improve the photoelectrochemical(PEC)performance and the loading quality of CdS quantum dots(QDs).On the basis of their better surface characteristics,the CdS QDs were uniformly loaded on EWZ NT array film with a good coverage ratio and interface connection;this effectively improved the light-harvesting ability,charge transportation and separation as well as charge injection efficiency during the PEC reaction.Therefore,all the CdS QD-sensitized EWZ NT array films exhibited significantly enhanced PEC performance.The CdS/EWZ-7 composite films exhibited the optimal photocurrent density with a value of 12 mA·cm^(-2),2.5 times higher than that of conventional CdS/ZnO-7 composite films under the same sensitization times with CdS QDs.The corresponding etching and optimizing mechanisms were also discussed.展开更多
CdTe/CdS quantum dots(QDs) are fabricated on Si nanowires(NWs) substrates with and without Au nanoparticles(NPs). The formation of Au NPs on Si NWs can be certified as shown in scanning electron microscopy image...CdTe/CdS quantum dots(QDs) are fabricated on Si nanowires(NWs) substrates with and without Au nanoparticles(NPs). The formation of Au NPs on Si NWs can be certified as shown in scanning electron microscopy images. The optical properties of samples are also investigated. It is interesting to find that the photoluminescence(PL) intensity of Cd Te/Cd S QD films on Si nanowire substrates with Au NPs is significantly increased,which can reach 8-fold higher than that of samples on planar Si without Au NPs. The results of finite-difference time-domain simulation indicate that Au NPs induce stronger localization of electric field and then boost the PL intensity of QDs nearby. Furthermore, the time-resolved luminescence decay curve shows the PL lifetime, which is about 5.5 ns at the emission peaks of QD films on planar, increasing from 1.8 ns of QD films on Si NWs to4.7 ns after introducing Au NPs into Si NWs.展开更多
基金supported by the National Natural Science Foundation of China(No.20705019)National High-Tech R&D Program(No.2006AA03Z324)
文摘In the study, we observed the strong adsorption of CdTe/CdS QDs to antibodies and the formation of QDs-antibodies conjugates. Capillary electrophoresis with laser-induced fluorescence detection (CE-LIF), fluorescence spectrometry and fluorescence correlation spectroscopy (FCS) were used to characterize the QDs conjugates with antibody. We found that the QDs-antibody conjugates possessed high fluorescence, small hydrodynamic radii and good stability in aqueous solution. 2009 Ji Cun Ren. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
基金The Fundamental Research Funds for the Central Universities,China(No.2232015D3-15)Shanghai Natural Science Foundation,China(No.14ZR1401300)“111 Project”Biomedical Textile Materials Science and Technology,China(No.B07024)
文摘Novel CdTe/CdS quantum dots(QDs)coated with a hybrid of SiO_2 and ZnS were fabricated through a simple two-step approach.The hybrid SiO_2/ZnS coated CdTe/CdS quantum dots was characterized by transmission electron microscopy(TEM),UV and fluorescence spectrometer.Results indicated that the core-shell structure gave the QDs outstanding photoluminescence properties,includinganarrowphotoluminescencespectrum,high photoluminescence(PL)quantum yield and long emission lifetime(average PL lifetime of increased from 26.4 ns to 49.1 ns).Cellular studies showed the QDs had good cytocompatibility with Hela cells as determined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide(MTT)assay after coating SiO_2/ZnS,and also proved the feasibility of using the hybrid SiO_2/ZnS coated QDs as optical probes for in vitro cell imaging.The synthesis method of QDs is highly promising for the production of robust and functional optical probes for bio-imaging and sensing applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61904098 and 11904209)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2019QF018)Higher Education Research and Development Program of Shandong Province,China(Grant No.J18KA242).
文摘The surface characteristics of ZnO were synthetically optimized by a self-designed simultaneous etching and W-doping hydrothermal method utilizing as-prepared ZnO nanorod(NR)array films as the template.Benefiting from the etching and regrowth process and the different structural stabilities of the various faces of ZnO NRs,the uniquely etched and W-doped ZnO(EWZ)nanotube(NT)array films with larger surface area,more active sites and better energy band structure were used to improve the photoelectrochemical(PEC)performance and the loading quality of CdS quantum dots(QDs).On the basis of their better surface characteristics,the CdS QDs were uniformly loaded on EWZ NT array film with a good coverage ratio and interface connection;this effectively improved the light-harvesting ability,charge transportation and separation as well as charge injection efficiency during the PEC reaction.Therefore,all the CdS QD-sensitized EWZ NT array films exhibited significantly enhanced PEC performance.The CdS/EWZ-7 composite films exhibited the optimal photocurrent density with a value of 12 mA·cm^(-2),2.5 times higher than that of conventional CdS/ZnO-7 composite films under the same sensitization times with CdS QDs.The corresponding etching and optimizing mechanisms were also discussed.
基金Supported by the Qing Lan Project of the Higher Education Institutions of Jiangsu Province,Qing Lan Project of Yangzhou Polytechnic Institute,the Natural Science Foundation of Yangzhou City under Grant No YZ2016123the National Natural Science Foundation of China under Grant No 61376004
文摘CdTe/CdS quantum dots(QDs) are fabricated on Si nanowires(NWs) substrates with and without Au nanoparticles(NPs). The formation of Au NPs on Si NWs can be certified as shown in scanning electron microscopy images. The optical properties of samples are also investigated. It is interesting to find that the photoluminescence(PL) intensity of Cd Te/Cd S QD films on Si nanowire substrates with Au NPs is significantly increased,which can reach 8-fold higher than that of samples on planar Si without Au NPs. The results of finite-difference time-domain simulation indicate that Au NPs induce stronger localization of electric field and then boost the PL intensity of QDs nearby. Furthermore, the time-resolved luminescence decay curve shows the PL lifetime, which is about 5.5 ns at the emission peaks of QD films on planar, increasing from 1.8 ns of QD films on Si NWs to4.7 ns after introducing Au NPs into Si NWs.