期刊文献+
共找到249篇文章
< 1 2 13 >
每页显示 20 50 100
Abiotic and Biotic Factors Controlling Grain Aroma along Value Chain of Fragrant Rice:A Review
1
作者 Ayut KONGPUN Tonapha PUSADEE +8 位作者 Pennapa JAKSOMSAK Kawiporn CHINACHANTA Patcharin TUIWONG Phukjira CHAN-IN Sawika KONSAENG Wasu PATHOM-AREE Suchila UTASEE Benjamaporn WANGKAEW Chanakan PROM-U-THAI 《Rice science》 SCIE CSCD 2024年第2期142-158,共17页
The aroma of fragrant rice is one of the grain quality attributes that significantly influenceconsumer preferences and prices in world markets. The volatile compound 2-acetyl-1-pyrroline (2AP) isrecognized as a key co... The aroma of fragrant rice is one of the grain quality attributes that significantly influenceconsumer preferences and prices in world markets. The volatile compound 2-acetyl-1-pyrroline (2AP) isrecognized as a key component of the aroma in fragrant rice. The variation in grain 2AP content amongvarious fragrant rice varieties is associated with the expression of the badh2 gene, with 19 alleles havingbeen identified so far. The grain 2AP content is strongly influenced by environmental and managementfactors during cultivation as well as post-harvest conditions. This review pinpointed the major abiotic andbiotic factors that control grain 2AP content. Abiotic factors refer to water, temperature, light quality,fertilizer application (both macro- and micro-nutrients), and soil properties, including salinity, while bioticfactors include microorganisms that produce aromatic compounds, thus influencing the grain aroma infragrant rice. Post-harvest management, including storage and drying conditions, can significantly impactthe grain 2AP content, and proper post-harvest conditions can intensify the grain aroma. This reviewsuggests that there are rice varieties that can serve as potential sources of genetic material for breedingrice varieties with high grain aroma content. It offers an overview of recent research on the major factorsaffecting the aroma content in fragrant rice. This knowledge will facilitate further research on theproduction of high-quality rice to meet the demands of farmers and consumers. 展开更多
关键词 aromatic rice 2-acetyl-1-pyrroline abiotic stress biotic stress post-harvest management
下载PDF
Abiotic stress treatment reveals expansin like A gene OfEXLA1 improving salt and drought tolerance of Osmanthus fragrans by responding to abscisic acid
2
作者 Bin Dong Qianqian Wang +7 位作者 Dan Zhou Yiguang Wang Yunfeng Miao Shiwei Zhong Qiu Fang Liyuan Yang Zhen Xiao Hongbo Zhao 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期573-585,共13页
Sweet osmanthus(Osmanthus fragrans) is a having general approval aromatic tree in China that is widely applied to landscaping and gardening. However, the evergreen tree adaptability is limited by many environmental st... Sweet osmanthus(Osmanthus fragrans) is a having general approval aromatic tree in China that is widely applied to landscaping and gardening. However, the evergreen tree adaptability is limited by many environmental stresses. Currently, limited information is available regarding the genetic analysis and functional identification of expansin genes in response to abiotic stress in sweet osmanthus. In this study, a total of 29 expansin genes were identified and divided into four groups by genome-wide analysis from the sweet osmanthus genome. Transcriptome and quantitative Real-time PCR analysis showed that the cell wall-localized protein expansin-like A(OfEXLA1) gene was significantly induced by salt and drought treatment. Histochemical GUS staining of transgenic Arabidopsis lines in which GUS activity was driven with the OfEXLA1 promoter, GUS activity was significantly induced by salt, drought, and exogenous abscisic acid(ABA). In yeast, we found OfEXLA1overexpression significantly improved the population of cells compared with wild-type strains after NaCl and polyethylene glycol(PEG)treatment. Additionally, OfEXLA1 overexpression not only promoted plant growth, but also improved the salt and drought tolerance in Arabidopsis. To gain insight into the role of ABA signaling in the regulation of OfEXLA1 improving abiotic tolerance in sweet osmanthus, four differentially expressed ABA Insensitive 5(ABI5)-like genes(OfABL4, OfABL5, OfABL7, and OfABL8) were identified from transcriptome, and dualluciferase(dual-LUC) and yeast one hybrid(Y1H) assay showed that OfABL4 and OfABL5 might bind to OfEXLA1 promoter to accumulate the OfEXLA1 expression by responding to ABA signaling to improve abiotic tolerance in sweet osmanthus. These results provide the information for understanding the molecular functions of expansin-like A gene and molecular breeding of sweet osmanthus in future. 展开更多
关键词 Osmanthus fragrans abiotic tolerance EXPANSIN Abscisic acid
下载PDF
Deciphering the Origin of Abiotic Organic Compounds on Earth:Review and Future Prospects
3
作者 WANG Chao TAO Renbiao +3 位作者 Jesse B.WALTERS REN Tianshi NAN Jingbo ZHANG Lifei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第1期288-308,共21页
The geologic production of abiotic organic compounds has been the subject of increasing scientific attention due to their use in the global carbon flux balance,by chemosynthetic biological communities,and for energy r... The geologic production of abiotic organic compounds has been the subject of increasing scientific attention due to their use in the global carbon flux balance,by chemosynthetic biological communities,and for energy resources.Extensive analysis of methane(CH_(4))and other organics in diverse geologic settings,combined with thermodynamic modelings and laboratory simulations,have yielded insights into the distribution of specific abiotic organic molecules on Earth and the favorable conditions and pathways under which they form.This updated and comprehensive review summarizes published results of petrological,thermodynamic,and experimental investigations of possible pathways for the formation of particular species of abiotic simple hydrocarbon molecules such as CH_(4),and of complex hydrocarbon systems,e.g.,long-chain hydrocarbons and even solid carbonaceous matters,in various geologic processes,distinguished into three classes:(1)pre-to early planetary processes;(2)mantle and magmatic processes;and(3)the gas/water-rock reaction processes in low-pressure ultramafic rock and high-pressure subduction zone systems.We not only emphasize how organics are abiotically synthesized but also explore the role or changes of organics in evolutionary geological environments after synthesis,such as phase transitions or organic-mineral interactions.Correspondingly,there is an urgent need to explore the diversity of abiotic organic compounds prevailing on Earth. 展开更多
关键词 abiotic hydrocarbons high P-T METHANE abiotic solid organic compounds deep carbon cycle
下载PDF
Genome-wide identification of TPS genes in sesame and analysis of their expression in response to abiotic stresses 被引量:1
4
作者 Wangyi Zhou Chen Sheng +4 位作者 Senouwa Segla Koffi Dossou Zhijian Wang Shengnan Song Jun You Linhai Wang 《Oil Crop Science》 CSCD 2023年第2期81-88,共8页
Trehalose and its precursor,trehalose-6-phosphate,play critical roles in plant metabolism and response to abiotic stresses.Trehalose-6-phosphate synthase(TPS)is a key enzyme in the trehalose synthesis pathway.Hence th... Trehalose and its precursor,trehalose-6-phosphate,play critical roles in plant metabolism and response to abiotic stresses.Trehalose-6-phosphate synthase(TPS)is a key enzyme in the trehalose synthesis pathway.Hence this study identified TPS genes in sesame(SiTPSs)and examined their expression patterns under various abiotic stresses.Totally,ten SiTPSs were identified and comprehensively characterized.SiTPSs were found to be unevenly distributed on five out of 13 sesame chromosomes and were predicted to be localized in chloroplasts and vacuoles of cells.Phylogenetic analysis classified SiTPS proteins into two groups(I and II),which was supported by gene structure and conserved motif analyses.Analysis of cis-acting elements in promoter regions of SiTPSs revealed that they might primarily involve developmental and environmental responses.SiTPSs exhibited different expression patterns in different tissues and under different abiotic stresses.Most group II SiTPS genes(SiTPS4-SiTPS10)were strongly induced by drought,salt,waterlogging,and osmotic stress.Particularly,SiTPS10 was the most significantly up-regulated under various abiotic stresses,indicating it is a candidate gene for improving sesame tolerance to multiple abiotic stresses.Our results provide insight into the TPS gene family in sesame and fundamental resources for genomics studies towards dissecting SiTPS genes’functions. 展开更多
关键词 SESAME TPS Gene family abiotic stress Gene expression
下载PDF
Abiotic Methane Reservoirs in the Western Tianshan HP–UHP Metamorphic Belt,China
5
作者 ZHANG Lijuan ZHANG Lifei +1 位作者 LI Xiaowei WANG Xiao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第1期337-349,共13页
Natural gas,consisting primarily of methane(CH_(4)),has become a major source of clean energy in modern society in many parts of the globe.Recent experimental observations and discoveries of deep-sourced abiotic CH_(4... Natural gas,consisting primarily of methane(CH_(4)),has become a major source of clean energy in modern society in many parts of the globe.Recent experimental observations and discoveries of deep-sourced abiotic CH_(4)in cold subduction zones indicate the important ability of cold subducted slabs to generate natural gas reservoirs.However,most CH_(4)flux and reservoirs remain unknown and their potential is overlooked in global carbon flux estimations.Massive abiotic CH_(4)-rich fluid inclusions(FIs)in garnet and omphacite from ultrahigh-pressure(UHP)eclogites have been found in the Western Tianshan(WT)UHP metamorphic belt,which provides one ideal case for quantification of abiotic CH_(4)stored in the cold subducted crust.By two methods,we assess the abiotic CH_(4)content stored in the Chinese WT HP–UHP metamorphic belt.Our calculations show that at least 113 Mt CH_(4)is stored in the WT eclogites.We also discuss the implications for CH_(4)reservoirs in subduction zones worldwide and speculate that the cold subduction zones may represent one of the largest,yet overlooked,sources of abiotic CH_(4)on Earth,which should not be ignored in the global natural resource and carbon flux estimations. 展开更多
关键词 energy resources abiotic CH_(4)reservoirs fluid inclusions carbon flux cold subduction zone ECLOGITE Tianshan Mts
下载PDF
Defensive Role of Plant Hormones in Advancing Abiotic Stress-Resistant Rice Plants
6
作者 M.Iqbal R.KHAN Sarika KUMARI +3 位作者 Faroza NAZIR Risheek Rahul KHANNA Ravi GUPTA Himanshu CHHILLAR 《Rice science》 SCIE CSCD 2023年第1期15-35,共21页
Consistent climatic perturbations have increased global environmental concerns, especially the impacts of abiotic stresses on crop productivity. Rice is a staple food crop for the majority of the world’s population. ... Consistent climatic perturbations have increased global environmental concerns, especially the impacts of abiotic stresses on crop productivity. Rice is a staple food crop for the majority of the world’s population. Abiotic stresses, including salt, drought, heat, cold and heavy metals, are potential inhibitors of rice growth and yield. Abiotic stresses elicit various acclimation responses that facilitate in stress mitigation. Plant hormones play an important role in mediating the growth and development of rice plants under optimal and stressful environments by activating a multitude of signalling cascades to elicit the rice plant’s adaptive responses. The current review describes the role of plant hormone-mediated abiotic stress tolerance in rice, potential crosstalk between plant hormones involved in rice abiotic stress tolerance and significant advancements in biotechnological initiatives including genetic engineering approach to provide a step forward in making rice resistance to abiotic stress. 展开更多
关键词 abiotic stress genetic engineering plant hormone RICE transcription factor TOLERANCE
下载PDF
Mechanisms of autophagy function and regulation in plant growth,development,and response to abiotic stress
7
作者 Yongbo Li Xiangmin Xu +5 位作者 Guang Qi Dezhou Cui Chen Huang Xinxia Sui Genying Li Qingqi Fan 《The Crop Journal》 SCIE CSCD 2023年第6期1611-1625,共15页
Autophagy is an evolutionarily conserved degradation pathway of lysosomes(in mammals)and vacuoles(in yeasts and plants)from lower yeasts to higher mammals.It wraps unwanted organelles and damaged proteins in a double-... Autophagy is an evolutionarily conserved degradation pathway of lysosomes(in mammals)and vacuoles(in yeasts and plants)from lower yeasts to higher mammals.It wraps unwanted organelles and damaged proteins in a double-membrane structure to transport them to vacuoles for degradation and recycling.In plants,autophagy functions in adaptation to the environment and maintenance of growth and development.This review systematically describes the autophagy process,biological functions,and regulatory mechanisms occurring during plant growth and development and in response to abiotic stresses.It provides a basis for further theoretical research and guidance of agricultural production. 展开更多
关键词 AUTOPHAGY FUNCTION Mechanism DEVELOPMENT abiotic stresses
下载PDF
Hormetic effects of abiotic environmental stressors in woody plants in the context of climate change
8
作者 Elena A.Erofeeva 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第1期7-19,共13页
Woody plants contribute to the stability and productivity of terrestrial ecosystems and are significantly affected by climate change.According to the concept of environmental hormesis,any environmental stressors can c... Woody plants contribute to the stability and productivity of terrestrial ecosystems and are significantly affected by climate change.According to the concept of environmental hormesis,any environmental stressors can cause hormesis,that is,stimulation in low doses and inhibition in high doses.Numerous studies have demonstrated plant hormesis under low doses of various abiotic stressors.However,the hormetic responses of woody plants to abiotic stressors from climate change are insufficiently studied.This review analyses data on the stimulating effects of low doses of climate stressors in experiments and in real ecosystems.Numerous laboratory and field experiments show that single and combined exposure to various climate stressors(temperature,humidity,and elevated carbon dioxide concentrations) can cause hormesis in various species and functional types of woody plants,which can be accompanied by hormetic trade-offs and preconditioning.In addition,there is evidence of climate hormesis in woody plants in ecosystem conditions.Field experiments in various ecosystems show that elevated temperatures and/or precipitation or elevated carbon dioxide concentrations causing hormesis in dominant tree species can stimulate ecosystem productivity.Moreover,climate hormesis of the growth and reproduction of dominant forest tree species contributes to the spread of forests,that is,climate-driven ecological succession.The main commonalities of climate hormesis in woody species include:(1) Low-dose climate stressors cause hormesis in woody plants when strong(limiting) stressors do not affect plants or these limiting stressors are mitigated by climate change.(2) Hormesis can occur with the direct impact of climatic stressors on trees and with the indirect impact of these stressors on plants through other parts of the ecosystem.(3)Climate stressor interactions(e.g.,synergism,antagonism)can affect hormesis.(4) Hormesis may disappear due to tree acclimatization with consequent changes in the range of tolerances to climate factors.This review highlights the need for targeted studies of climate hormesis in woody species and its role in the adaptation of forest ecosystems to climate change. 展开更多
关键词 abiotic stress Ecological succession ECOSYSTEM FOREST HORMESIS
下载PDF
The nuclear export receptor OsXPO1 is required for rice development and involved in abiotic stress responses
9
作者 Qiufei Peng Jieyu Qiu +3 位作者 Xintong Li Xuezhong Xu Xinxiang Peng Guohui Zhu 《The Crop Journal》 SCIE CSCD 2023年第1期71-78,共8页
The transport of proteins to and from the nucleus is necessary for many cellular processes and is one of the ways plants respond to developmental signals and environmental stresses.Nucleocytoplasmic trafficking of pro... The transport of proteins to and from the nucleus is necessary for many cellular processes and is one of the ways plants respond to developmental signals and environmental stresses.Nucleocytoplasmic trafficking of proteins is mediated by the nuclear transport receptor(NTR).Although NTR has been extensively studied in humans and Arabidopsis,it has rarely been identified and functionally characterized in rice.In this study,we identified exportin 1 in rice(OsXPO1)as a nuclear export receptor.OsXPO1shares high protein identity with its functional homologs in Arabidopsis and other organisms.OsXPO1localized to both the nucleus and the cytoplasm,directly interacted with the small GTPases OsRAN1and OsRAN2 in the nucleus,and mediated their nuclear export.Loss-of-function osxpo1 mutations were lethal at the seedling stage.Suppression of OsXPO1 expression in RNA interference lines produced multifaceted developmental defects,including arrested growth,premature senescence,abnormal inflorescence,and brown and mouth-opened spikelets.Overexpression of OsXPO1 in rice reduced plant height and seed-setting rate,but increased plant tolerance in response to PEG-mimicked drought stress and salt stress.These results indicate that OsXPO1 is a nuclear export receptor and acts in regulating plant development and abiotic stress responses. 展开更多
关键词 Exportin 1 Nucleocytoplasmic transport Plant development abiotic stress
下载PDF
Identification and Characterization of ZF-HD Genes in Response to Abscisic Acid and Abiotic Stresses in Maize
10
作者 Xiaojie Jing Chunyan Li +5 位作者 Chengjuan Luo Chaonan Yao Jiahao Zhang Tingting Zhu Jiuguang Wang Chaoxian Liu 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第3期707-723,共17页
The zinc finger homeodomain(ZF-HD)genes belong to the homeobox gene family,playing critical roles in flower development and stress response.Despite their importance,however,to date there has been no genome-wide identi... The zinc finger homeodomain(ZF-HD)genes belong to the homeobox gene family,playing critical roles in flower development and stress response.Despite their importance,however,to date there has been no genome-wide identification and characterization of the ZF-HD genes that are probably involved in stress responses in maize.In this study,24 ZF-HD genes were identified,and their chromosomal locations,protein properties,duplication patterns,structures,conserved motifs and expression patterns were investigated.The results revealed that the ZF-HD genes are unevenly distributed on nine chromosomes and that most of these genes lack introns.Six and two ZF-HD genes have undergone segmental and tandem duplication,respectively,during genome expansion.These 24 ZF-HD transcription factors were classified into six major groups on the basis of protein molecular evolutionary relationship.The expression profiles of these genes in different tissues were evaluated,resulting in producing two distinct clusters.ZF-HD genes are preferentially expressed in reproductive tissues.Furthermore,expression profiles of the 24 ZF-HD genes in response to different kinds of stresses revealed that ten genes were simultaneously up-regulated under ABA,salt and PEG treatments;meanwhile four genes were simultaneously down-regulated.These findings will pave the way for deciphering the function and mechanism of ZF-HD genes on how to implicate in abiotic stress. 展开更多
关键词 Maize(Zea mays L.) ZF-HD evolutionary relationship expression pattern abiotic stress
下载PDF
What Do Seedlings Like? The Relationship between Seedling Richness and Abundance with Abiotic Factors
11
作者 Johnatan Jair de Paula Marchiori Vinicius de Souza Oliveira +7 位作者 Eduarda Carriço Ana Clara Bayer Bernabé Anderson Mathias Holtz Ronilda Lana Aguiar Ana Beatriz Mamedes Piffer Gilcéa Teixeira Fontana Boone Ricardo Amaro de Sales Lusiane de Sousa Ferreira 《Agricultural Sciences》 2023年第6期767-774,共8页
Natural regeneration is the interaction of natural processes to restore the forest ecosystem. Its dynamics are influenced by the intensity and extent of a series of abiotic and biotic factors, which may be intrinsic o... Natural regeneration is the interaction of natural processes to restore the forest ecosystem. Its dynamics are influenced by the intensity and extent of a series of abiotic and biotic factors, which may be intrinsic or extrinsic. Knowing the importance of establishing natural regeneration within forest ecosystems, this work aimed to evaluate whether litter depth and trail distance influenced seedling abundance and richness in a forest fragment undergoing natural restoration. The hypothesis tested in this research was that abiotic factors influence the natural regeneration of this forest since they are factors that are directly linked to seed germination and seedling establishment. 30 plots of 1 m2 were randomly analyzed within the forest located on the brown trail. A millimeter ruler was used to diagnose the litter depth and a measuring tape to measure the distance from the plot to the edge. In each plot the seedlings were morpho-specified and each morphospecies had the number of individuals counted. Linear regression tests were performed to assess the relationships between species richness and trail distance and litter depth. The same was done for species abundance. All results showed that there is no relationship pattern between any of the variables. Other factors also influence the regeneration of a forest, such as luminosity and seed bank. Furthermore, litter depth is related to the successional stage of the forest. It was concluded that the abiotic factors tested do not influence the regeneration of the study area. 展开更多
关键词 abiotic Factors Natural Regeneration Forest Ecosystem
下载PDF
Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants 被引量:25
12
作者 Shabir H.Wani Vinay Kumar +1 位作者 Varsha Shriram Saroj Kumar Sah 《The Crop Journal》 SCIE CAS CSCD 2016年第3期162-176,共15页
Abiotic stresses including drought,salinity,heat,cold,flooding,and ultraviolet radiation causes crop losses worldwide.In recent times,preventing these crop losses and producing more food and feed to meet the demands o... Abiotic stresses including drought,salinity,heat,cold,flooding,and ultraviolet radiation causes crop losses worldwide.In recent times,preventing these crop losses and producing more food and feed to meet the demands of ever-increasing human populations have gained unprecedented importance.However,the proportion of agricultural lands facing multiple abiotic stresses is expected only to rise under a changing global climate fueled by anthropogenic activities.Identifying the mechanisms developed and deployed by plants to counteract abiotic stresses and maintain their growth and survival under harsh conditions thus holds great significance.Recent investigations have shown that phytohormones,including the classical auxins,cytokinins,ethylene,and gibberellins,and newer members including brassinosteroids,jasmonates,and strigolactones may prove to be important metabolic engineering targets for producing abiotic stress-tolerant crop plants.In this review,we summarize and critically assess the roles that phytohormones play in plant growth and development and abiotic stress tolerance,besides their engineering for conferring abiotic stress tolerance in transgenic crops.We also describe recent successes in identifying the roles of phytohormones under stressful conditions.We conclude by describing the recent progress and future prospects including limitations and challenges of phytohormone engineering for inducing abiotic stress tolerance in crop plants. 展开更多
关键词 PHYTOHORMONES abiotic STRESS METABOLIC engineering PLANT stresses
下载PDF
Genome-wide identification and analysis of the DREB genes and their expression profiles under abiotic stresses in Chinese jujube(Ziziphus jujuba Mill.) 被引量:8
13
作者 Heying Zhou Jiping Jia +4 位作者 Decang Kong Zhendong Zhang Shuang Song Yingyue Li Xiaoming Pang 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第4期1277-1287,共11页
CBF/DREB proteins play a critical role in abiotic stress-mediated gene expression and represent attractive regulons for plant breeding programs.However,no study has been conducted for CBF/DREB protein-related genes in... CBF/DREB proteins play a critical role in abiotic stress-mediated gene expression and represent attractive regulons for plant breeding programs.However,no study has been conducted for CBF/DREB protein-related genes in jujube(Ziziphus jujuba Mill.).In this study,twenty-five ZjDREB genes were identified and annotated from the jujube(Z.jujuba‘Dongzao’)genome.Detailed analysis,including gene classification,annotation,phylogenetic evaluation,conserved motif determination and expression profiling were performed on all genes.Phylogenetic analysis showed that ZjDREB proteins were divided into five subgroups(A1–A5),but lacking a subgroup A6 corresponding to AtDREBs.The ZjDREB genes were distributed in nine of twelve chromosomes in the genome.Additionally,the expression patterns of the DREB genes under different abiotic stresses were investigated using q RT-PCR.Nineteen ZjDREB genes were down-regulated under low temperature,in contrast six ZjDREB genes(01,03,05,11,23 and 24)were up-regulated.Under drought,salinity and high temperature conditions,expression of ZjDREB03,09,10,14,15,17 and 20 genes were induced and showed similar expression patterns,suggesting that various stress conditions share common elements in the signaling pathway.The results suggest that the family of DREB genes play an important role in abiotic stresses in jujube,and provide a foundation for further functional studies of this important class of transcriptional regulators. 展开更多
关键词 abiotic stress CHINESE JUJUBE DREB Expression patterns Phylogenetic ANALYSIS
下载PDF
Abiotic and biotic drivers of species diversity in understory layers of cold temperate coniferous forests in North China 被引量:5
14
作者 Hui Wang Mengtao Zhang Hongwei Nan 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第6期2213-2225,共13页
Understory plants are important components of forest ecosystems and play a crucial role in regulating community structures,function realization,and community succession.However,little is known about how abiotic and bi... Understory plants are important components of forest ecosystems and play a crucial role in regulating community structures,function realization,and community succession.However,little is known about how abiotic and biotic drivers affect the diversity of understory species in cold temperate coniferous forests in the semiarid climate region of North China.We hypothesized that(1)topographic factors are important environmental factors affecting the distribution and variation of understory strata,and(2)different understory strata respond differently to environmental factors;shrubs may be significantly affected by the overstory stratum,and herbs may be more affected by surface soil conditions.To test these hypotheses,we used the boosted regression tree method to analyze abiotic and biotic environmental factors that influence understory species diversity,using data from 280 subplots across 56 sites in cold temperate coniferous forests of North China.Elevation and slope aspect were the dominant and indirect abiotic drivers affecting understory species diversity,and individual tree size inequality(DBH variation)was the dominant biotic driver of understory species diversity;soil water content was the main edaphic factors affecting herb layers.Elevation,slope aspect,and DBH variation accounted for 36.4,14.5,and 12.1%,respectively,of shrub stratum diversity.Shrub diversity decreased with elevation within the range of altitude of this study,but increased with DBH variation;shrub diversity was highest on north-oriented slopes.The strongest factor affecting herb stratum species diversity was slope aspect,accounting for 25.9%of the diversity,followed by elevation(15.7%),slope(12.2%),and soil water content(10.3%).The highest herb diversity was found on southeast-oriented slopes and the lowest on northeast-oriented slopes;herb diversity decreased with elevation and soil water content,but increased with slope.The results of the study provide a reference for scientific management and biodiversity protection in cold temperate coniferous forests of North China. 展开更多
关键词 abiotic and biotic DRIVERS Cold TEMPERATE CONIFEROUS forests North China SEMI-ARID region UNDERSTORY species diversity
下载PDF
TaSAUR78 enhances multiple abiotic stress tolerance by regulating the interacting gene TaVDAC1 被引量:5
15
作者 GUO Yuan XU Chang-bing +4 位作者 SUN Xian-jun HU Zheng FAN Shou-jin JIANG Qi-yan ZHANG Hui 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第12期2682-2690,共9页
SMALL AUXIN-UP RNAs(SAURs) regulated by abiotic stress play multiple functions in plants. However, the functions of SAURs in abiotic stress are largely unknown. In this study, we cloned a novel SAUR gene, Ta SAUR78, f... SMALL AUXIN-UP RNAs(SAURs) regulated by abiotic stress play multiple functions in plants. However, the functions of SAURs in abiotic stress are largely unknown. In this study, we cloned a novel SAUR gene, Ta SAUR78, from wheat, and we found that Ta SAUR78 interacted with Ta VDAC1(voltage-dependent anion channel). Salt stress decreased expression of Ta SAUR78 and increased expression of Ta VDAC1. Overexpression of Ta SAUR78 enhanced tolerance to salt, drought, and freezing stresses in transgenic Arabidopsis and reduced the accumulation of reactive oxygen species(ROS) under salt stress. Overexpression of Ta VDAC1 enhanced tolerance to salt stress, while decreased tolerance to drought and low temperature stresses in transgenic Arabidopsis. Ta VDAC1 overexpression increased the accumulation of ROS in plants. These results suggested that Ta SAUR78 improved plant tolerance to abiotic stresses by regulating Ta VDAC1. This study generated valuable information on the functions of Ta SAUR78 and Ta VDAC1 in multiple abiotic stresses, which may facilitate the deployment of these genes to enhance crop tolerance to abiotic stresses in the future. 展开更多
关键词 TaSAUR78 TaVDAC1 WHEAT abiotic STRESS
下载PDF
MdDREB2A in apple is involved in the regulation of multiple abiotic stress responses 被引量:6
16
作者 Xinyu Lian Xinyu Zhao +3 位作者 Qiang Zhao Guiluan Wang Yuanyuan Li Yujin Hao 《Horticultural Plant Journal》 SCIE CSCD 2021年第3期197-208,共12页
Abiotic stress has a serious effect on plant growth.The transcription factor DREB2A is a member of the AP2/ERF family,which is widely involved in abiotic stress response.However,the function of apple MdDREB2A has not ... Abiotic stress has a serious effect on plant growth.The transcription factor DREB2A is a member of the AP2/ERF family,which is widely involved in abiotic stress response.However,the function of apple MdDREB2A has not been systematically investigated.In this study,MdDREB2A was isolated from the cultivar‘Royal Gala’.The open reading frame of MdDREB2A was 1197 bp in length and it encoded a protein of 398 amino acidswithmolecularweight of 43.8 kD.As a transcription factor,MdDREB2Awas located in the nucleus.qRT-PCR analysis showed that MdDREB2A was involved in responses to drought,salt,and ABA stresses.Under these stress treatments,the relative electrical conductivity,superoxide anion and malondialdehyde(MDA)in transgenic materials significantly decreased,and the content of proline increased in MdDREB2A transgenic plants,compared to the controls,indicating that MdDREB2A transgenic apple calli and transgenic Arabidopsis exhibited improved resistance to abiotic stress.This study introduces a candidate gene for the genetic improvement of crop resistance and reveals important function of MdDREB2A in the regulation of abiotic stress response. 展开更多
关键词 APPLE MdDREB2A FUNCTION abiotic stress
下载PDF
Two novel eukaryotic translation initiation factor 5A genes from Populus simonii×P.nigra confer tolerance to abiotic stresses in Saccharomyces cerevisiae 被引量:4
17
作者 Tangchun Zheng Lina Zang +2 位作者 Lijuan Dai Chuanping Yang Guanzheng Qu 《Journal of Forestry Research》 SCIE CAS CSCD 2017年第3期453-463,共11页
The role of plant e IF5 A proteins in multiple biological processes, such as protein synthesis regulation,translation elongation, m RNA turnover, programmed cell death and stress tolerance is well known. Toward using ... The role of plant e IF5 A proteins in multiple biological processes, such as protein synthesis regulation,translation elongation, m RNA turnover, programmed cell death and stress tolerance is well known. Toward using these powerful proteins to increase stress tolerance in agricultural plants, in the present study, we cloned and characterized Psne IF5A2 and Psne IF5A4 from young poplar(P. simonii 9 P. nigra) leaves. The deduced amino acid sequences of Psne IF5A2 and Psne IF5A4 were 98 %similar to each other, and they are orthologs of e IF5A1 in Arabidopsis. In a subcellular localization analysis,Psne IF5A2 and Psne IF5A4 proteins were localized in the nucleus and cytoplasm. q RT-PCR analysis showed that Psne IF5A2 and Psne IF5A4 were transcribed in poplar flowers, stem, leaves, and roots. In addition, they were also induced by abiotic stresses. Transgenic yeast expressing Psne IF5A2 and Psne IF5A4 had increased salt, heavy metal, osmotic, oxidative tolerance. Our results suggest that Psne IF5A2 and Psne IF5A4 are excellent candidates for genetic engineering to improve salt and heavy metal tolerance in agricultural plants. 展开更多
关键词 abiotic tolerance EIF5A Populussimonii×P.nigra Subcellular localization Yeast
下载PDF
Roles of miR319-regulated TCPs in plant development and response to abiotic stress 被引量:4
18
作者 Yujie Fang Yuqian Zheng +4 位作者 Wei Lu Jian Li Yujing Duan Shuai Zhang Youping Wang 《The Crop Journal》 SCIE CSCD 2021年第1期17-28,共12页
Elaborate regulation of gene expression is required for plants to maintain normal growth,development,and reproduction.MicroRNAs(miRNAs)and transcription factors are key players that control gene expression in plant re... Elaborate regulation of gene expression is required for plants to maintain normal growth,development,and reproduction.MicroRNAs(miRNAs)and transcription factors are key players that control gene expression in plant regulatory networks.The TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR(TCP)family comprises plantspecific transcription factors that contain a conserved TCP domain of 59 amino acids.Some members of this family are targeted by miR319,one of the most ancient and evolutionarily conserved miRNAs in plants.Accumulating evidence has revealed that miR319-regulated TCP(MRTCP)genes participate extensively in plant development and responses to environmental stress.In this review,the structural characteristics and classifications of TCP transcription factors and the regulatory relationships between TCP transcription factors and miRNAs are introduced.Current knowledge of the regulatory functions of MRTCP genes in multiple biological pathways including leaf development,vascular formation,flowering,hormone signaling,and response to environmental stresses such as cold,salt,and drought is summarized.This review will be beneficial for understanding the roles of the MRTCP-mediated regulatory network and its molecular mechanisms in plant development and stress response,and provides a theoretical basis for plant genetic improvement. 展开更多
关键词 TCP miR319 REGULATION Growth and development abiotic stress
下载PDF
Genome-wide identification and transcriptome profiling reveal great expansion of SWEET gene family and their wide-spread responses to abiotic stress in wheat (Triticum aestivum L.) 被引量:4
19
作者 QIN Jin-xia JIANG Yu-jie +7 位作者 LU Yun-ze ZHAO Peng WU Bing-jin LI Hong-xia WANG Yu XU Sheng-bao SUN Qi-xin LIU Zhen-shan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第7期1704-1720,共17页
The Sugars Will Eventually be Exported Jransporter(SWEET)gene family,identified as sugar transporters,has been demonstrated to play key roles in phloem loading,grain filling,pollen nutrition,and plant-pathogen interac... The Sugars Will Eventually be Exported Jransporter(SWEET)gene family,identified as sugar transporters,has been demonstrated to play key roles in phloem loading,grain filling,pollen nutrition,and plant-pathogen interactions.To date,the study of SWEET genes in response to abiotic stress is very limited.In this study,we performed a genome-wide identification of the SWEET gene family in wheat and examined their expression profiles under mutiple abiotic stresses.We identified a total of 105 wheat SWEET genes,and phylogenic analysis revealed that they fall into five clades,with clade V specific to wheat and its closely related species.Of the 105 wheat SWEET genes,59%exhibited significant expression changes after stress treatments,including drought,heat,heat combined with drought,and salt stresses,and more up-regulated genes were found in response to drought and salt stresses.Further hierarchical clustering analysis revealed that SWEET genes exhibited differential expression patterns in response to different stress treatments or in different wheat cultivars.Moreover,different phylogenetic clades also showed distinct response to abiotic stress treatments.Finally,we found that homoeologous SWEET genes from different wheat subgenomes exhibited differential expression patterns in response to different abiotic stress treatments.The genome-wide analysis revealed the great expansion of SWEET gene family in wheat and their wide participation in abiotic stress response.The expression partitioning of SWEET homoeologs under abiotic stress conditions may confer greater flexibility for hexaploid wheat to adapt to ever changing environments. 展开更多
关键词 WHEAT sugar transporter abiotic stress homoeologous gene expression partitioning
下载PDF
Pediococcus Acidilactici Inhibit Biofilm Formation of Food-Borne Pathogens on Abiotic Surfaces 被引量:3
20
作者 Xiqian Tan Ye Han +1 位作者 Huazhi Xiao Zhijiang Zhou 《Transactions of Tianjin University》 EI CAS 2017年第1期70-77,共8页
In this study,we aimed to examine the inhibitory effect of PA003,a Pediococcus acidilactici that produces lactic acid and antimicrobial peptides pediocin,on pathogenic biofilm formation on abiotic surfaces.PA003 and p... In this study,we aimed to examine the inhibitory effect of PA003,a Pediococcus acidilactici that produces lactic acid and antimicrobial peptides pediocin,on pathogenic biofilm formation on abiotic surfaces.PA003 and pathogens(Escherichia coli,Salmonella enterica serovar Typhimurium,Staphylococcus aureus and Listeria monocytogenes) were used to evaluate auto-aggregation,hydrophobicity,biofilm formation and biofilm formation inhibition on stainless steel,polyvinyl chloride and glass slides in terms of exclusion,displacement and competition.The results showed the highest auto-aggregation abilities were observed for one of the E.coli strains EAggEC(E58595) and the highest hydrophobic strain was observed with EPEC(E2348/69)(51.9%).The numbers of biofilm cells of E.coli,S.Typhimurium,S.aureus and L.monocytogenes on stainless steel,polyvinyl chloride and glass slide coupons were effectively reduced by approximately 4log CFU/coupon.These results demonstrate that lactic acid bacteria can be used as an alternative to effectively control the formation of biofilms by food-borne pathogens. 展开更多
关键词 abiotic surface BIOFILM INHIBITION PATHOGEN Pediococcu acidilactici
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部