期刊文献+
共找到271,022篇文章
< 1 2 250 >
每页显示 20 50 100
Adipsin inhibits Irak2 mitochondrial translocation and improves fatty acid β-oxidation to alleviate diabetic cardiomyopathy
1
作者 Meng-Yuan Jiang Wan-Rong Man +14 位作者 Xue-Bin Zhang Xiao-Hua Zhang Yu Duan Jie Lin Yan Zhang Yang Cao De-Xi Wu Xiao-Fei Shu Lei Xin Hao Wang Xiao Zhang Cong-Ye Li Xiao-Ming Gu Xuan Zhang Dong-Dong Sun 《Military Medical Research》 SCIE CAS CSCD 2024年第5期625-642,共18页
Background Diabetic cardiomyopathy (DCM) causes the myocardium to rely on fatty acid β-oxidation for energy. The accumulation of intracellular lipids and fatty acids in the myocardium usually results in lipotoxicity,... Background Diabetic cardiomyopathy (DCM) causes the myocardium to rely on fatty acid β-oxidation for energy. The accumulation of intracellular lipids and fatty acids in the myocardium usually results in lipotoxicity, which impairs myocardial function. Adipsin may play an important protective role in the pathogenesis of DCM. The aim of this study is to investigate the regulatory effect of Adipsin on DCM lipotoxicity and its molecular mechanism.MethodsA high-fat diet (HFD)-induced type 2 diabetes mellitus model was constructed in mice with adipose tissue-specific overexpression of Adipsin (Adipsin-Tg). Liquid chromatography-tandem mass spectrometry (LC–MS/MS), glutathione-S-transferase (GST) pull-down technique, Co-immunoprecipitation (Co-IP) and immunofluorescence colocalization analyses were used to investigate the molecules which can directly interact with Adipsin. The immunocolloidal gold method was also used to detect the interaction between Adipsin and its downstream modulator.ResultsThe expression of Adipsin was significantly downregulated in the HFD-induced DCM model (P < 0.05). Adipose tissue-specific overexpression of Adipsin significantly improved cardiac function and alleviated cardiac remodeling in DCM (P < 0.05). Adipsin overexpression also alleviated mitochondrial oxidative phosphorylation function in diabetic stress (P < 0.05). LC–MS/MS analysis, GST pull-down technique and Co-IP studies revealed that interleukin-1 receptor-associated kinase-like 2 (Irak2) was a downstream regulator of Adipsin. Immunofluorescence analysis also revealed that Adipsin was co-localized with Irak2 in cardiomyocytes. Immunocolloidal gold electron microscopy and Western blotting analysis indicated that Adipsin inhibited the mitochondrial translocation of Irak2 in DCM, thus dampening the interaction between Irak2 and prohibitin (Phb)-optic atrophy protein 1 (Opa1) on mitochondria and improving the structural integrity and function of mitochondria (P < 0.05). Interestingly, in the presence of Irak2 knockdown, Adipsin overexpression did not further alleviate myocardial mitochondrial destruction and cardiac dysfunction, suggesting a downstream role of Irak2 in Adipsin-induced responses (P < 0.05). Consistent with these findings, overexpression of Adipsin after Irak2 knockdown did not further reduce the accumulation of lipids and their metabolites in the cardiac myocardium, nor did it enhance the oxidation capacity of cardiomyocytes expose to palmitate (PA) (P < 0.05). These results indicated that Irak2 may be a downstream regulator of Adipsin.ConclusionsAdipsin improves fatty acid β-oxidation and alleviates mitochondrial injury in DCM. The mechanism is related to Irak2 interaction and inhibition of Irak2 mitochondrial translocation. 展开更多
关键词 Diabetic cardiomyopathy Mitochondrial translocation Mitochondrial function Fatty acidβ-oxidation
原文传递
Lactobacillus frumenti mediates energy production via fatty acid β-oxidation in the liver of early-weaned piglets 被引量:1
2
作者 Zhichang Wang Jun Hu +4 位作者 Wenyong Zheng Tao Yang Xinkai Wang Chunlin Xie Xianghua Yan 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2020年第1期268-279,共12页
Background:Early-weaning of piglets is often accompanied by severe disorders,especially diarrhea.The gut microbiota and its metabolites play a critical role in the maintenance of the physiologic and metabolic homeosta... Background:Early-weaning of piglets is often accompanied by severe disorders,especially diarrhea.The gut microbiota and its metabolites play a critical role in the maintenance of the physiologic and metabolic homeostasis of the host.Our previous studies have demonstrated that oral administration of Lactobacillus frumenti improves epithelial barrier functions and confers diarrhea resistance in early-weaned piglets.However,the metabolic response to L.frumenti administration remains unclear.Then,we conducted simultaneous serum and hepatic metabolomic analyses in early-weaned piglets administered by L.frumenti or phosphatebuffered saline(PBS).Results:A total of 1006-day-old crossbred piglets(Landrace×Yorkshire)were randomly divided into two groups and piglets received PBS(sterile,2 m L)or L.frumenti(suspension in PBS,10~8 CFU/m L,2 m L)by oral administration once per day from 6 to 20 days of age.Piglets were weaned at 21 days of age.Serum and liver samples for metabolomic analyses were collected at 26 days of age.Principal components analysis(PCA)showed that L.frumenti altered metabolism in serum and liver.Numerous correlations(P<0.05)were identified among the serum and liver metabolites that were affected by L.frumenti.Concentrations of guanosine monophosphate(GMP),inosine monophosphate(IMP),and uric acid were higher in serum of L.frumenti administration piglets.Pathway analysis indicated that L.frumenti regulated fatty acid and amino acid metabolism in serum and liver.Concentrations of fatty acidβ-oxidation related metabolites in serum(such as3-hydroxybutyrylcarnitine,C4-OH)and liver(such as acetylcarnitine)were increased after L.frumenti administration.Conclusions:Our findings suggest that L.frumenti regulates lipid metabolism and amino acid metabolism in the liver of early-weaned piglets,where it promotes fatty acidβ-oxidation and energy production.High serum concentrations of nucleotide intermediates,which may be an alternative strategy to reduce the incidence of diarrhea in early-weaned piglets,were further detected.These findings broaden our understanding of the relationships between the gut microbiota and nutrient metabolism in the early-weaned piglets. 展开更多
关键词 Early-weaned PIGLETS Fatty acidβ-oxidation Gut MICROBIOTA LACTOBACILLUS frumenti METABOLOMIC analysis
下载PDF
Electro-oxidation of Ascorbic Acid on PVP-stabilized Graphene Electrode 被引量:2
3
作者 HAN Dong-fang SHAN Chang-sheng +2 位作者 GUO Li-ping NIU Li HAN Dong-xue 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2010年第2期287-290,共4页
Polyvinylpyrrolidone-stabilized graphene(PVP-graphene) was synthesized and investigated as a modifier for the determination of ascorbic acid(AA). With PVP acting as stabilizer and dispersant, the resulting PVP-gra... Polyvinylpyrrolidone-stabilized graphene(PVP-graphene) was synthesized and investigated as a modifier for the determination of ascorbic acid(AA). With PVP acting as stabilizer and dispersant, the resulting PVP-graphene material could disperse well into water. And the PVP-graphene modified glassy carbon electrode(PVP-graphene-GCE) showed an obvious electrocatalytical activity toward the oxidation of AA in a phosphate buffer solution(PBS, pH=7.0) with an oxidation potential of AA at 0.052 V vs. AglAgCl(sat. KCl). The calibration curve for APt was linear in a concentration range from 1.0×10^-5 to 5.0×10^-4 mol/L with a correlation coefficient of 0.9998. And the detection limit was found to be 1 μtmol/L. During the oxidation of AA, the π-π interaction of graphene plane with conjugated hexenoic aeid-lactone in AA molecules might play a key role. As a result, an obvious decrease of overpotential was achieved at such a PVP-graphene electrode through a possible adsorption/enrichment process, which will probably trigger potential applications for the electroanalysis of some aromatic and heterocyclic compounds. 展开更多
关键词 GRAPHENE POLYVINYLPYRROLIDONE Electro-oxidation Ascorbic acid
下载PDF
Enabling heterogeneous catalysis to achieve carbon neutrality: Directional catalytic conversion of CO_(2) into carboxylic acids 被引量:7
4
作者 Xiaofei Zhang Wenhuan Huang +4 位作者 Le Yu Max García-Melchor Dingsheng Wang Linjie Zhi Huabin Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期1-35,共35页
The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving c... The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs. 展开更多
关键词 carbon neutrality carboxylic acids CO_(2)conversion heterogeneous catalyst in situ technology
下载PDF
Endogenous biosynthesis of docosahexaenoic acid(DHA)regulates fish oocyte maturation by promoting pregnenolone production 被引量:2
5
作者 Yi Li Xuehui Li +6 位作者 Ding Ye Ru Zhang Chengjie Liu Mudan He Houpeng Wang Wei Hu Yonghua Sun 《Zoological Research》 SCIE CSCD 2024年第1期176-188,共13页
Omega-3 polyunsaturated fatty acids(n-3 PUFAs),particularly docosahexaenoic acid(22:6n-3,DHA),play crucial roles in the reproductive health of vertebrates,including humans.Nevertheless,the underlying mechanism related... Omega-3 polyunsaturated fatty acids(n-3 PUFAs),particularly docosahexaenoic acid(22:6n-3,DHA),play crucial roles in the reproductive health of vertebrates,including humans.Nevertheless,the underlying mechanism related to this phenomenon remains largely unknown.In this study,we employed two zebrafish genetic models,i.e.,elovl2^(-/-)mutant as an endogenous DHAdeficient model and fat1(omega-3 desaturase encoding gene)transgenic zebrafish as an endogenous DHA-rich model,to investigate the effects of DHA on oocyte maturation and quality.Results show that the elovl2^(-/-)mutants had much lower fecundity and poorer oocyte quality than the wild-type controls,while the fat1 zebrafish had higher fecundity and better oocyte quality than wildtype controls.DHA deficiency in elovl2^(-/-)embryos led to defects in egg activation,poor microtubule stability,and reduced pregnenolone levels.Further study revealed that DHA promoted pregnenolone synthesis by enhancing transcription of cyp11a1,which encodes the cholesterol side-chain cleavage enzyme,thereby stabilizing microtubule assembly during oogenesis.In turn,the hypothalamic-pituitary-gonadal axis was enhanced by DHA.In conclusion,using two unique genetic models,our findings demonstrate that endogenously synthesized DHA promotes oocyte maturation and quality by promoting pregnenolone production via transcriptional regulation of cyp11a1. 展开更多
关键词 Docosahexaenoic acid Oocyte maturation Oocyte quality PREGNENOLONE MICROTUBULE
下载PDF
A comparison study on structure-function relationship of polysaccharides obtained from sea buckthorn berries using different methods:antioxidant and bile acid-binding capacity 被引量:5
6
作者 Qiaoyun Li Zuman Dou +5 位作者 Qingfei Duan Chun Chen Ruihai Liu Yueming Jiang Bao Yang Xiong Fu 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期494-505,共12页
In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic... In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods. 展开更多
关键词 Sea buckthorn Extraction method STRUCTURE Rheological properties Antioxidant activity Bile acid binding capacity
下载PDF
Abiotic stress treatment reveals expansin like A gene OfEXLA1 improving salt and drought tolerance of Osmanthus fragrans by responding to abscisic acid 被引量:1
7
作者 Bin Dong Qianqian Wang +7 位作者 Dan Zhou Yiguang Wang Yunfeng Miao Shiwei Zhong Qiu Fang Liyuan Yang Zhen Xiao Hongbo Zhao 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期573-585,共13页
Sweet osmanthus(Osmanthus fragrans) is a having general approval aromatic tree in China that is widely applied to landscaping and gardening. However, the evergreen tree adaptability is limited by many environmental st... Sweet osmanthus(Osmanthus fragrans) is a having general approval aromatic tree in China that is widely applied to landscaping and gardening. However, the evergreen tree adaptability is limited by many environmental stresses. Currently, limited information is available regarding the genetic analysis and functional identification of expansin genes in response to abiotic stress in sweet osmanthus. In this study, a total of 29 expansin genes were identified and divided into four groups by genome-wide analysis from the sweet osmanthus genome. Transcriptome and quantitative Real-time PCR analysis showed that the cell wall-localized protein expansin-like A(OfEXLA1) gene was significantly induced by salt and drought treatment. Histochemical GUS staining of transgenic Arabidopsis lines in which GUS activity was driven with the OfEXLA1 promoter, GUS activity was significantly induced by salt, drought, and exogenous abscisic acid(ABA). In yeast, we found OfEXLA1overexpression significantly improved the population of cells compared with wild-type strains after NaCl and polyethylene glycol(PEG)treatment. Additionally, OfEXLA1 overexpression not only promoted plant growth, but also improved the salt and drought tolerance in Arabidopsis. To gain insight into the role of ABA signaling in the regulation of OfEXLA1 improving abiotic tolerance in sweet osmanthus, four differentially expressed ABA Insensitive 5(ABI5)-like genes(OfABL4, OfABL5, OfABL7, and OfABL8) were identified from transcriptome, and dualluciferase(dual-LUC) and yeast one hybrid(Y1H) assay showed that OfABL4 and OfABL5 might bind to OfEXLA1 promoter to accumulate the OfEXLA1 expression by responding to ABA signaling to improve abiotic tolerance in sweet osmanthus. These results provide the information for understanding the molecular functions of expansin-like A gene and molecular breeding of sweet osmanthus in future. 展开更多
关键词 Osmanthus fragrans Abiotic tolerance EXPANSIN Abscisic acid
下载PDF
Dietary supplementation of benzoic acid and essential oils combination enhances intestinal resilience against LPS stimulation in weaned piglets 被引量:1
8
作者 Chang Cui Yulong Wei +9 位作者 Yibo Wang Wen Ma Xiaoyu Zheng Jun Wang Ziwei Ma Caichi Wu Licui Chu Shihai Zhang Wutai Guan Fang Chen 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第2期878-897,共20页
Background The benefits of combining benzoic acid and essential oils(BAO)to mitigate intestinal impairment during the weaning process have been well established,while the detailed underlying mechanism has not been ful... Background The benefits of combining benzoic acid and essential oils(BAO)to mitigate intestinal impairment during the weaning process have been well established,while the detailed underlying mechanism has not been fully elucidated.Previous research has primarily focused on the reparative effects of BAO on intestinal injury,while neglecting its potential in enhancing intestinal stress resistance.Methods In this study,we investigated the pre-protective effect of BAO against LPS-induced stress using a modified experimental procedure.Piglets were pre-supplemented with BAO for 14 d,followed by a challenge with LPS or saline to collect blood and intestinal samples.Results Our findings demonstrated that BAO supplementation led to significant improvements in piglets’final weight,average daily gain,and feed intake/body gain ratio.Additionally,BAO supplementation positively influenced the composition of intestinal microbiota,increasing beneficial Actinobacteriota and Alloprevotella while reducing harmful Desulfobacterota,Prevotella and Oscillospira.Furthermore,BAO supplementation effectively mitigated oxidative disturbances and inflammatory responses induced by acute LPS challenge.This was evidenced by elevated levels of T-AOC,SOD,and GSH,as well as decreased levels of MDA,TNF-α,and IL-6 in the plasma.Moreover,piglets subjected to LPS challenge and pre-supplemented with BAO exhibited significant improvements in intestinal morphological structure and enhanced integrity,as indicated by restored expression levels of Occludin and Claudin-1 compared to the non-supplemented counterparts.Further analysis revealed that BAO supplementation enhanced the jejunal antioxidative capacity by increasing GSH-Px levels and decreasing MDA levels under the LPS challenge and stimulated the activation of the Nrf2 signaling pathway.Additionally,the reduction of TLR4/NF-κB/MAPK signaling pathways activation and proinflammatory factor were also observed in the jejunal of those piglets fed with BAO.Conclusions In summary,our study demonstrates that pre-supplementation of BAO enhances the anti-stress capacity of weaned piglets by improving intestinal microbiota composition,reinforcing the intestinal barrier,and enhancing antioxidative and anti-inflammatory capabilities.These effects are closely associated with the activation of Nrf2 and TLR4/NF-κB/MAPK signaling pathways. 展开更多
关键词 ANTI-STRESS Benzoic acid Essential oils INTESTINE LPS Weaned piglets
下载PDF
Bile acids,gut microbiota,and therapeutic insights in hepatocellular carcinoma 被引量:1
9
作者 Yang Song Harry CH Lau +1 位作者 Xiang Zhang Jun Yu 《Cancer Biology & Medicine》 SCIE CAS CSCD 2024年第2期144-162,共19页
Hepatocellular carcinoma(HCC)is a prevalent and aggressive liver malignancy.The interplay between bile acids(BAs)and the gut microbiota has emerged as a critical factor in HCC development and progression.Under normal ... Hepatocellular carcinoma(HCC)is a prevalent and aggressive liver malignancy.The interplay between bile acids(BAs)and the gut microbiota has emerged as a critical factor in HCC development and progression.Under normal conditions,BA metabolism is tightly regulated through a bidirectional interplay between gut microorganisms and BAs.The gut microbiota plays a critical role in BA metabolism,and BAs are endogenous signaling molecules that help maintain liver and intestinal homeostasis.Of note,dysbiotic changes in the gut microbiota during pathogenesis and cancer development can disrupt BA homeostasis,thereby leading to liver inflammation and fibrosis,and ultimately contributing to HCC development.Therefore,understanding the intricate interplay between BAs and the gut microbiota is crucial for elucidating the mechanisms underlying hepatocarcinogenesis.In this review,we comprehensively explore the roles and functions of BA metabolism,with a focus on the interactions between BAs and gut microorganisms in HCC.Additionally,therapeutic strategies targeting BA metabolism and the gut microbiota are discussed,including the use of BA agonists/antagonists,probiotic/prebiotic and dietary interventions,fecal microbiota transplantation,and engineered bacteria.In summary,understanding the complex BA-microbiota crosstalk can provide valuable insights into HCC development and facilitate the development of innovative therapeutic approaches for liver malignancy. 展开更多
关键词 Bile acid gut microbiota hepatocellular carcinoma THERAPEUTICS microbiota modulation
下载PDF
Blood glucose-lowering activity of protocatechuic acid is mediated by inhibiting a-glucosidase 被引量:1
10
作者 Huafang Ding Shouhe Huang +6 位作者 Chui Yiu Chook Erika Kwek Chi Yan Kaying Ma Jianhui Liu Hanyue Zhu Zhenyu Chen 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1212-1219,共8页
α-Glucosidase inhibitors are effective in controlling postprandial hyperglycemia,which play crucial roles in the management of type 2 diabetes.Protocatechuic acid(PCA)is one of phenolic acids existing not only in var... α-Glucosidase inhibitors are effective in controlling postprandial hyperglycemia,which play crucial roles in the management of type 2 diabetes.Protocatechuic acid(PCA)is one of phenolic acids existing not only in various plant foods but also as a major microbial metabolite of dietary anthocyanins in the large colon.The present study investigated the inhibitory mechanism of PCA on a-glucosidase in vitro and examined its effect on postprandial blood glucose levels in vivo.Results from in vitro experiments demonstrated that PCA was a mix-type inhibitor of a-glucosidase.Driven by hydrogen bonds and van der Waals interactions,PCA reversibly bound withα-glucosidase to form a stable a-glucosidase-PCA complex in a spontaneous manner.The computational simulation found that PCA could insert into the active cavity of a-glucosidase and establish hydrogen bonds with catalytic amino acid residues.PCA binding aroused the steric hindrance for substrates to enter active sites and caused the structural changes of interacted catalytic amino acid residues.PCA also exhibited postprandial hypoglycemic capacity in diabetic mice.This study may provide the theoretical basis for the application of PCA as an active ingredient of functional foods in dietary management of diabetes. 展开更多
关键词 Protocatechuic acid Α-GLUCOSIDASE Postprandial hyperglycemia Inhibition mechanism
下载PDF
Shikimic acid accelerates phase change and flowering in Chinese jujube 被引量:1
11
作者 Xianwei Meng Zhiguo Liu +11 位作者 Li Dai Weiqiang Zhao Jiurui Wang Lili Wang Yuanpei Cui Ying Li Yinshan Cui Yao Zhang Luyao Wang Fengjiao Yu Jin Zhao Mengjun Liu 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期413-424,共12页
The juvenile-to-adult phase change with first flowering as the indicator plays a crucial role in the lifecycle of fruit trees. However, the molecular mechanisms underlying phase change in fruit trees remain largely un... The juvenile-to-adult phase change with first flowering as the indicator plays a crucial role in the lifecycle of fruit trees. However, the molecular mechanisms underlying phase change in fruit trees remain largely unknown. Shikimic acid (ShA) pathway is a main metabolic pathway closely related to the synthesis of hormones and many important secondary metabolites participating in plant phase change. So,whether ShA regulates phase change in plants is worth clarifying. Here, the distinct morphological characteristics and the underlying mechanisms of phase change in jujube (Ziziphus jujuba Mill.), an important fruit tree native to China with nutritious fruit and outstanding tolerance abiotic stresses, were clarified. A combined transcriptome and metabolome analysis found that ShA is positively involved in jujube(Yuhong’×Xing 16’) phase change. The genes in the upstream of ShA synthesis pathway (ZjDAHPS, ZjDHQS and ZjSDH), the contents of ShA and the downstream secondary metabolites like phenols were significantly upregulated in the phase change period. Further, the treatment of spraying exogenous ShA verified that ShA at a very low concentration (60 mg·L^(-1)) can substantially speed up the phase change and flowering of jujube and other tested plants including Arabidopsis, tomato and wheat. The exogenous ShA (60 mg·L^(-1)) treatment in jujube seedlings could increase the accumulation of endogenous ShA, enhance leaf photosynthesis and the synthesis of phenols especially flavonoids and phenolic acids, and promote the expression of genes (ZjCOs, ZjNFYs and ZjPHYs) involved in flowering pathway. Basing on above results, we put forward a propose for the underlying mechanism of ShA regulating phase change, and a hypothesis that ShA could be considered a phytohormone-like substance because it is endogenous, ubiquitous, movable and highly efficient at very low concentrations. This study highlights the critical role of ShA in plant phase change and its phytohormone-like properties. 展开更多
关键词 Ziziphus jujuba Mill. Phase change FLOWERING Shikimic acid TRANSCRIPTOME METABOLOME
下载PDF
Gut microbiota induced abnormal amino acids and their correlation with diabetic retinopathy 被引量:1
12
作者 Sheng-Qun Jiang Su-Na Ye +4 位作者 Yin-Hua Huang Yi-Wen Ou Ke-Yang Chen Jian-Su Chen Shi-Bo Tang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第5期883-895,共13页
AIM:To explore the correlation of gut microbiota and the metabolites with the progression of diabetic retinopathy(DR)and provide a novel strategy to elucidate the pathological mechanism of DR.METHODS:The fecal samples... AIM:To explore the correlation of gut microbiota and the metabolites with the progression of diabetic retinopathy(DR)and provide a novel strategy to elucidate the pathological mechanism of DR.METHODS:The fecal samples from 32 type 2 diabetes patients with proliferative retinopathy(PDR),23 with nonproliferative retinopathy(NPDR),27 without retinopathy(DM),and 29 from the sex-,age-and BMI-matched healthy controls(29 HC)were analyzed by 16S rDNA gene sequencing.Sixty fecal samples from PDR,DM,and HC groups were assayed by untargeted metabolomics.Fecal metabolites were measured using liquid chromatographymass spectrometry(LC-MS)analysis.Associations between gut microbiota and fecal metabolites were analyzed.RESULTS:A cluster of 2 microbiome and 12 metabolites accompanied with the severity of DR,and the close correlation of the disease progression with PDR-related microbiome and metabolites were found.To be specific,the structure of gut microbiota differed in four groups.Diversity and richness of gut microbiota were significantly lower in PDR and NPDR groups,than those in DM and HC groups.A cluster of microbiome enriched in PDR group,including Pseudomonas,Ruminococcaceae-UCG-002,Ruminococcaceae-UCG-005,Christensenellaceae-R-7,was observed.Functional analysis showed that the glucose and nicotinate degradations were significantly higher in PDR group than those in HC group.Arginine,serine,ornithine,and arachidonic acid were significantly enriched in PDR group,while proline was enriched in HC group.Functional analysis illustrated that arginine biosynthesis,lysine degradation,histidine catabolism,central carbon catabolism in cancer,D-arginine and D-ornithine catabolism were elevated in PDR group.Correlation analysis revealed that Ruminococcaceae-UCG-002 and Christensenellaceae-R-7 were positively associated with L-arginine,ornithine levels in fecal samples.CONCLUSION:This study elaborates the different microbiota structure in the gut from four groups.The relative abundance of Ruminococcaceae-UCG-002 and Parabacteroides are associated with the severity of DR.Amino acid and fatty acid catabolism is especially disordered in PDR group.This may help provide a novel diagnostic parameter for DR,especially PDR. 展开更多
关键词 proliferative retinopathy gut microbiota Ruminococcaceae amino acid metabolism ARGININE
原文传递
Elaidic acid leads to mitochondrial dysfunction via mitochondria-associated membranes triggers disruption of mitochondrial calcium fluxes 被引量:2
13
作者 Hui Liu Xuenan Li +4 位作者 Ziyue Wang Lu Li Yucai Li Haiyang Yan Yuan Yuan 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期287-298,共12页
Elaidic acid(EA)stimulation can lead to endoplasmic reticulum stress(ERS),accompanied by a large release of Ca^(2+),and ultimately the activation of NLRP3 inflammasome in Kupffer cells(KCs).Mitochondrial instability o... Elaidic acid(EA)stimulation can lead to endoplasmic reticulum stress(ERS),accompanied by a large release of Ca^(2+),and ultimately the activation of NLRP3 inflammasome in Kupffer cells(KCs).Mitochondrial instability or dysfunction may be the key stimulating factors to activate NLRP3 inflammasome,and sustained Ca^(2+)transfer can result in mitochondrial dysfunction.We focused on KCs to explore the damage to mitochondria by EA.After EA stimulation,cells produced an oxidative stress(OS)response with a significant increase in ROS release.Immunoprecipitation experiments and the addition of inhibitors revealed that the increase in the level of intracellular Ca^(2+)led to Ca^(2+)accumulation in the mitochondrial matrix via mitochondria-associated membranes(MAMs).This was accompanied by a significant release of m ROS,loss of MMP and ATP,and a significant increase in mitochondrial permeability transition pore opening,ultimately leading to mitochondrial instability.These findings confirmed the mechanism that EA induced mitochondrial Ca^(2+)imbalance in KCs via MAM,ultimately leading to mitochondrial dysfunction.Meanwhile,EA induced OS and the decrease of MMP and ATP in rat liver,and significant lesions were found in liver mitochondria.Swelling of the inner mitochondrial cristae and mitochondrial vacuolization occurred,with a marked increase in lipid droplets. 展开更多
关键词 Elaidic acid(EA) Mitochondria-associated membranes(MAMs) Calcium Endoplasmic reticulum Mitochondria dysfunction
下载PDF
Tuning electronic structure of RuO_(2)by single atom Zn and oxygen vacancies to boost oxygen evolution reaction in acidic medium 被引量:1
14
作者 Qing Qin Tiantian Wang +7 位作者 Zijian Li Guolin Zhang Haeseong Jang Liqiang Hou Yu Wang Min Gyu Kim Shangguo Liu Xien Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期94-102,I0003,共10页
The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct ... The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER. 展开更多
关键词 ELECTROCATALYST acidic oxygen evolution reaction Electronic structure engineering DURABILITY Reaction barrier
下载PDF
Effect of different drying methods on the amino acids,α-dicarbonyls and volatile compounds of rape bee pollen 被引量:1
15
作者 Yanxiang Bi Jiabao Ni +6 位作者 Xiaofeng Xue Zidan Zhou Wenli Tian Valérie Orsat Sha Yan Wenjun Peng Xiaoming Fang 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期517-527,共11页
The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed ... The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed vacuum drying(PVD),freeze drying(FD),infrared drying(IRD),hot-air drying(HAD)and sun drying(SD)on free amino acids(FAAs),α-dicarbonyl compounds(α-DCs)and volatile compounds(VOCs)in rape bee pollen(RBP)were determined.The results showed that FD significantly released the essential amino acids(EAAs)compared with fresh samples while SD caused the highest loss.Glucosone was the dominantα-DCs in RBP and the highest loss was observed after PVD.Aldehydes were the dominant volatiles of RBP and SD samples contained more new volatile substances(especially aldehydes)than the other four drying methods.Comprehensively,FD and PVD would be potential methods to effectively reduce the quality deterioration of RBP in the drying process. 展开更多
关键词 DRYING Bee pollen Free amino acids α-Dicarbonyl compounds Volatile compounds
下载PDF
Metagenomic analysis revealing the metabolic role of microbial communities in the free amino acid biosynthesis of Monascus rice vinegar during fermentation 被引量:1
16
作者 Hang Gao Jian Zhang +4 位作者 Li Liu Lijun Fu Yan Zhao Germán Mazza Xin Zhang 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2317-2326,共10页
Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic netw... Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic network on FAA biosynthesis remains unclear.Through metagenomic analysis,this work aimed to elucidate the roles of microbes in FAA biosynthesis during Monascus rice vinegar fermentation.Taxonomic profiles from functional analyses showed 14 dominant genera with high contributions to the metabolism pathways.The metabolic network for FAA biosynthesis was then constructed,and the microbial distribution in different metabolic pathways was illuminated.The results revealed that 5 functional genera were closely involved in FAA biosynthesis.This study illuminated the metabolic roles of microorganisms in FAA biosynthesis and provided crucial insights into the functional attributes of microbiota in vinegar fermentation. 展开更多
关键词 Monascus rice vinegar Metagenomic analysis Free amino acid synthesis Metabolic pathway Microbial distribution
下载PDF
Antibacterial mechanism of kojic acid and tea polyphenols against Escherichia coli O157:H7 through transcriptomic analysis 被引量:1
17
作者 Yilin Lin Ruifei Wang +4 位作者 Xiaoqing Li Keren Agyekumwaa Addo Meimei Fang Yehui Zhang Yigang Yu 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期736-747,共12页
Escherichia coli O157:H7 is one of the major foodborne pathogenic bacterial that cause infectious diseases in humans.The previous found that a combination of kojic acid and tea polyphenols exhibited better activity ag... Escherichia coli O157:H7 is one of the major foodborne pathogenic bacterial that cause infectious diseases in humans.The previous found that a combination of kojic acid and tea polyphenols exhibited better activity against E.coli O157:H7 than using either alone.This study aimed to explore responses underlying the antibacterial mechanisms of kojic acid and tea polyphenols from the gene level.The functional enrichment analysis by comparing kojic acid and tea polyphenols individually or synergistically against E.coli O157:H7 found that acid resistance systems in kojic acid were activated,and the cell membrane and genomic DNA were destructed in the cells,resulting in“oxygen starvation”.The oxidative stress response triggered by tea polyphenols inhibited both sulfur uptake and the synthesis of ATP,which affected the bacteria's life metabolic process.Interestingly,we found that kojic acid combined with tea polyphenols hindered the uptake of iron that played an essential role in the synthesis of DNA,respiration,tricarboxylic acid cycle.The results suggested that the iron uptake pathways may represent a novel approach for kojic acid and tea polyphenols synergistically against E.coli O157:H7 and provided a theoretical basis for bacterial pathogen control in the food industry. 展开更多
关键词 Kojic acid Tea polyphenols Antibacterial mechanism Escherichia coli O157:H7 RNA-SEQ
下载PDF
P-aminobenzoic acid promotes retinal regeneration through activation of Ascl1a in zebrafish 被引量:1
18
作者 Meihui He Mingfang Xia +3 位作者 Qian Yang Xingyi Chen Haibo Li Xiaobo Xia 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1849-1856,共8页
The retina of zebrafish can regenerate completely after injury.M ultiple studies have demonstrated that metabolic alte rations occur during retinal damage;however to date no study has identified a link between metabol... The retina of zebrafish can regenerate completely after injury.M ultiple studies have demonstrated that metabolic alte rations occur during retinal damage;however to date no study has identified a link between metabolites and retinal regeneration of zebrafish.Here,we performed an unbiased metabolome sequencing in the N-methyl-D-aspartic acid-damaged retinas of zebrafish to demonstrate the metabolomic mechanism of retinal regeneration.Among the differentially-ex pressed metabolites,we found a significant decrease in p-aminobenzoic acid in the N-methyl-D-aspartic acid-damaged retinas of zebrafish.Then,we investigated the role of p-aminobenzoic acid in retinal regeneration in adult zebrafish.Impo rtantly,p-aminobenzoic acid activated Achaetescute complex-like 1a expression,thereby promoting Müller glia reprogramming and division,as well as Müller glia-derived progenitor cell proliferation.Finally,we eliminated folic acid and inflammation as downstream effectors of PABA and demonstrated that PABA had little effect on Müller glia distribution.Taken together,these findings show that PABA contributes to retinal regeneration through activation of Achaetescute complex-like 1a expression in the N-methyl-Daspartic acid-damaged retinas of zebrafish. 展开更多
关键词 Achaetescute complex-like 1a(Ascl1a) metabolomics Müller glia p-aminobenzoic acid(PABA) RETINA REGENERATION ZEBRAFISH
下载PDF
Pretreatment with Lithospermic Acid Attenuates Oxidative Stress-induced Apoptosis in Bone Marrow-derived Mesenchymal Stem Cells via Anti-oxidation and Activation of PI3K/Akt Pathway 被引量:7
19
作者 LI Wang-Yang ZHOU You-Liang +5 位作者 LI Tiao ZENG Peng XU Wu-Ji LU Xiao-Long QI Xin-Yu XIONG Huia 《Digital Chinese Medicine》 2019年第1期29-40,共12页
Objective Despite the potential therapeutic approaches of bone marrow-derived mesenchymal stem cells(BMSCs)in orthopaedic,their applications are hampered by harsh oxidative stress conditions after transplantation.In t... Objective Despite the potential therapeutic approaches of bone marrow-derived mesenchymal stem cells(BMSCs)in orthopaedic,their applications are hampered by harsh oxidative stress conditions after transplantation.In this study,the antiapoptotic and anti-oxidative properties of lithospermic acid(LSA)on BMSCs exposed to hydrogen peroxide(H2O2)were investigated.Methods In the present study,we used H2O2 to induce oxidative injury on BMSCs.Reactive oxygen species(ROS)staining and superoxide dismutase(SOD)assay were performed.The expression levels of phosphorylated(p)-Akt,Bcl-2-associated X protein(Bax)and B-cell lymphoma 2(Bcl-2)were measured by Western blotting.Results LSA can significantly reduce H2O2-induced chromatin condensation and intracellular ROS levels,enhance the activity of SOD.Moreover,it can alleviate H2O2-induced apoptosis by upregulating Bcl-2 and p-Akt,down-regulating Bax,which was blocked by the PI3K inhibitor,LY294002.Conclusions Our results demonstrated that pretreatment with LSA could attenuate oxidative stress-induced apoptosis in BMSCs,which may be related with anti-oxidant properties and partly via modulating PI3K/Akt pathway,suggesting that pharmacologically manipulating BMSCs with LSA could be a promising drug to increase cell survival for BMSCs transplantation in musculoskeletal disorders of orthopaedic. 展开更多
关键词 Oxidative stress Lithospermic acid Apoptosis BMSCS PI3K/AKT
下载PDF
Serum cystatin C,monocyte/high-density lipoprotein-C ratio,and uric acid for the diagnosis of coronary heart disease and heart failure 被引量:1
20
作者 Ming Li Da-Hao Yuan +2 位作者 Zhi Yang Teng-Xiang Luw Xiao-Biao Zou 《World Journal of Clinical Cases》 SCIE 2024年第18期3461-3467,共7页
BACKGROUND Coronary heart disease(CHD)and heart failure(HF)are the major causes of morbidity and mortality worldwide.Early and accurate diagnoses of CHD and HF are essential for optimal management and prognosis.Howeve... BACKGROUND Coronary heart disease(CHD)and heart failure(HF)are the major causes of morbidity and mortality worldwide.Early and accurate diagnoses of CHD and HF are essential for optimal management and prognosis.However,conventional diagnostic methods such as electrocardiography,echocardiography,and cardiac biomarkers have certain limitations,such as low sensitivity,specificity,availability,and cost-effectiveness.Therefore,there is a need for simple,noninvasive,and reliable biomarkers to diagnose CHD and HF.AIM To investigate serum cystatin C(Cys-C),monocyte/high-density lipoprotein cholesterol ratio(MHR),and uric acid(UA)diagnostic values for CHD and HF.METHODS We enrolled 80 patients with suspected CHD or HF who were admitted to our hospital between July 2022 and July 2023.The patients were divided into CHD(n=20),HF(n=20),CHD+HF(n=20),and control groups(n=20).The serum levels of Cys-C,MHR,and UA were measured using immunonephelometry and an enzymatic method,respectively,and the diagnostic values for CHD and HF were evaluated using receiver operating characteristic(ROC)curve analysis.RESULTS Serum levels of Cys-C,MHR,and UA were significantly higher in the CHD,HF,and CHD+HF groups than those in the control group.The serum levels of Cys-C,MHR,and UA were significantly higher in the CHD+HF group than those in the CHD or HF group.The ROC curve analysis showed that serum Cys-C,MHR,and UA had good diagnostic performance for CHD and HF,with areas under the curve ranging from 0.78 to 0.93.The optimal cutoff values of serum Cys-C,MHR,and UA for diagnosing CHD,HF,and CHD+HF were 1.2 mg/L,0.9×10^(9),and 389μmol/L;1.4 mg/L,1.0×10^(9),and 449μmol/L;and 1.6 mg/L,1.1×10^(9),and 508μmol/L,respectively.CONCLUSION Serum Cys-C,MHR,and UA are useful biomarkers for diagnosing CHD and HF,and CHD+HF.These can provide information for decision-making and risk stratification in patients with CHD and HF. 展开更多
关键词 Serum cystatin C Monocyte/high-density lipoprotein-C ratio Uric acid Coronary heart disease Heart failure Risk stratification
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部