期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The enhanced volume source boundary point method for the calculation of acoustic radiation problem
1
作者 WANG Xiufeng CHEN Xinzhao WANG Youcheng (Hefei University of Technology Hefei 230009) 《Chinese Journal of Acoustics》 2003年第1期50-58,共9页
The Volume Source Boundary Point Method (VSBPM) is greatly improved so that it will speed up the VSBPM's solution of the acoustic radiation problem caused by the vibrating body. The fundamental solution provided b... The Volume Source Boundary Point Method (VSBPM) is greatly improved so that it will speed up the VSBPM's solution of the acoustic radiation problem caused by the vibrating body. The fundamental solution provided by Helmholtz equation is enforced in a weighted residual sense over a tetrahedron located on the normal line of the boundary node to replace the coefficient matrices of the system equation. Through the enhanced volume source boundary point analysis of various examples and the sound field of a vibrating rectangular box in a semi-anechoic chamber, it has revealed that the calculating speed of the EVSBPM is more than 10 times faster than that of the VSBPM while it works on the aspects of its calculating precision and stability, adaptation to geometric shape of vibrating body as well as its ability to overcome the non-uniqueness problem. 展开更多
关键词 of on in for The enhanced volume source boundary point method for the calculation of acoustic radiation problem is that body been than
原文传递
Calculation of vibrational energy transition rates in acoustic relaxation processes for excitable gas molecules
2
作者 ZHANG Kesheng ZHANG Xiangqun +2 位作者 TANG Wenyong XIAO Yingqun JIANG Xueqin 《Chinese Journal of Acoustics》 CSCD 2018年第2期202-218,共17页
To research the correlation between vibrational energy transition rates and acoustic relaxation processes in excitable gases, the vibrational relaxation theory provided by Tanczos [J. Chem. Phy3. 25, 439 (1956)] is ... To research the correlation between vibrational energy transition rates and acoustic relaxation processes in excitable gases, the vibrational relaxation theory provided by Tanczos [J. Chem. Phy3. 25, 439 (1956)] is applied to calculate the energy transition rates of Vibrational- Vibrational (V-V) and Vibrational-Translational (V-T) energy transfer in gas mixtures. The results of calculation for the multi-relaxation processes in various gas mixtures, consisting of carbon dioxide, methane, chlorine, nitrogen, and oxygen at room temperature, demonstrate that the acoustic energy stagnated in every vibrational mode is coupled with each other through V-V energy exchanges. The vibrational excitation energy will relax through the V-T de-excitation path of the lowest mode because of its fastest V-T transition rate, resulting in that only one absorption peak can be measured for most of excitable gas mixtures. Thus, an effective model is provided to analyze how the vibrational energy transition rates affect the characteristics of acoustic relaxation processes and acoustic propagation in excitable gas mixtures. 展开更多
关键词 calculation of vibrational energy transition rates in acoustic relaxation processes for excitable gas molecules
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部