The fiber reinforced concrete has good dynamic mechanical properties. But corresponding research lacks the dynamic damage characteristics of the polypropylene fiber(fiber of low elastic modulus) and steel fiber(fib...The fiber reinforced concrete has good dynamic mechanical properties. But corresponding research lacks the dynamic damage characteristics of the polypropylene fiber(fiber of low elastic modulus) and steel fiber(fiber of high elastic modulus) reinforced concrete under medium strain rate(10-6 s-1-10-4 s-1). In order to study the effect of strain rate on the damage characteristics of fiber reinforced concrete during the full curve damage process, the real time dynamic acoustic emission(AE) technique was applied to monitor the damage process of fiber reinforced concrete at three strain rates. The AE wavelet energy spectrum in ca8 frequency band and average AE peak frequency at three strain rates were analyzed. With the accumulation of damage, the AE wavelet energy spectrum in ca8 frequency band increased first and then decreased, and the average AE peak frequency increased gradually. With the increase of strain rate, the AE wavelet energy spectrum in ca8 frequency band and average AE peak frequency decreased gradually. The polypropylene fiber content has more obvious effect on the Dynamic increase factor(DIF) of the peak stress than the steel fiber content. The theoretical basis was provided for the monitoring of dynamic damage of fiber reinforced concrete based on the AE technique.展开更多
Acoustic emission ( AE ) features during the fracture process of notched wrought aluminum alloy 7N01 and weld were investigated under the three-point bending load. Wavelet transform is used to investigate the time-f...Acoustic emission ( AE ) features during the fracture process of notched wrought aluminum alloy 7N01 and weld were investigated under the three-point bending load. Wavelet transform is used to investigate the time-frequency features of AE signals during the test. The experimental results showed that AE energy was effective indicators to detect the crack initiation for 7N01 aluminum. The digital images from monitoring the notch tip region of 7 NO1 aluminum sample verify the prediction of AE signals. The weld emits low energy, weak signal strength, and low peak amplitude, while stronger AE energy, amplitude, and more AE event counts for the base metal. In short, the AE technique was more sensitive to the changes in the fracture mode and could be used to monitor the damage development in welded structures.展开更多
基金Funded by the National Natural Science Foundation of China(No.51009058)Postdoctoral Science Foundation of China(No.2011M501160)+1 种基金the University Natural Science Research Project of Jiangsu Province(No.13KJD560002)the Doctoral Research Start-up Fund of Jinling Institute of Technology(No.Jit-b-201321)
文摘The fiber reinforced concrete has good dynamic mechanical properties. But corresponding research lacks the dynamic damage characteristics of the polypropylene fiber(fiber of low elastic modulus) and steel fiber(fiber of high elastic modulus) reinforced concrete under medium strain rate(10-6 s-1-10-4 s-1). In order to study the effect of strain rate on the damage characteristics of fiber reinforced concrete during the full curve damage process, the real time dynamic acoustic emission(AE) technique was applied to monitor the damage process of fiber reinforced concrete at three strain rates. The AE wavelet energy spectrum in ca8 frequency band and average AE peak frequency at three strain rates were analyzed. With the accumulation of damage, the AE wavelet energy spectrum in ca8 frequency band increased first and then decreased, and the average AE peak frequency increased gradually. With the increase of strain rate, the AE wavelet energy spectrum in ca8 frequency band and average AE peak frequency decreased gradually. The polypropylene fiber content has more obvious effect on the Dynamic increase factor(DIF) of the peak stress than the steel fiber content. The theoretical basis was provided for the monitoring of dynamic damage of fiber reinforced concrete based on the AE technique.
文摘Acoustic emission ( AE ) features during the fracture process of notched wrought aluminum alloy 7N01 and weld were investigated under the three-point bending load. Wavelet transform is used to investigate the time-frequency features of AE signals during the test. The experimental results showed that AE energy was effective indicators to detect the crack initiation for 7N01 aluminum. The digital images from monitoring the notch tip region of 7 NO1 aluminum sample verify the prediction of AE signals. The weld emits low energy, weak signal strength, and low peak amplitude, while stronger AE energy, amplitude, and more AE event counts for the base metal. In short, the AE technique was more sensitive to the changes in the fracture mode and could be used to monitor the damage development in welded structures.