With the increase in the switching frequency and power density,DC-DC converters encounter more severe electromagnetic interference(EMI)problems.To suppress the common-mode EMI generated by converters,as well as mainta...With the increase in the switching frequency and power density,DC-DC converters encounter more severe electromagnetic interference(EMI)problems.To suppress the common-mode EMI generated by converters,as well as maintain the high-power-density of converters,the active EMI filter(AEF)has attracted increasing interest owing to its small volume.The EMI suppression effect of the common single-stage single-sense single-injection AEF is confined because of the limited insertion loss,and the volume of the multi-stage AEF will be bulky.To solve this problem,this paper proposes a compact dual-current-injection current-sense current-compensation(DCJ-CSCC)AEF to increase the insertion loss in the entire conducted EMI frequency band,as well as considering the volume of the AEF.The structure and operating principle of the proposed AEF are introduced.Finally,taking a boost converter as an example,the effectiveness and advantages of the proposed DCJ-CSCC AEF were verified through a simulation and experiment,the results show that the proposed AEF has a better EMI suppression effect on the entire conducted EMI frequency band with a similar volume compared with existing single-injection feedforward current-sense current-compensation(FF-CSCC)and feedback current-sense current-compensation(FB-CSCC)AEFs.This paper provides a new selection for EMI suppression in DC-DC converters.展开更多
A feedforward current-sense current-compensation(CSCC)active EMI filter(AEF)for the direct current-side common-mode(CM)electromagnetic interference(EMI)suppression of high-power electric vehicle traction inverters is ...A feedforward current-sense current-compensation(CSCC)active EMI filter(AEF)for the direct current-side common-mode(CM)electromagnetic interference(EMI)suppression of high-power electric vehicle traction inverters is analyzed and designed.A detailed design of the components with formulas is provided based on an analysis of the CSCC AEF,including the CSCC AEF topology and its implementation.The feedforward active filter stage was implemented using a simple current transformer and a small circuit board.Only a small passive filter with a high resonant frequency is required for high-frequency noise attenuation.The filter’s effectiveness was validated using the simulation results and experimental measurements.展开更多
基金Supported in part by the Royal Academy of Engineering:Transforming Systems through Partnership(China)under Grant TSPC1017in part by the Excellent Youth Scholars of National Natural Science Foundation of China under Grant 51822701in part by the Key Project of National Natural Science Foundation of China and Smart Grid Joint Fund of State Grid Corporation of China under Grant U1866211.
文摘With the increase in the switching frequency and power density,DC-DC converters encounter more severe electromagnetic interference(EMI)problems.To suppress the common-mode EMI generated by converters,as well as maintain the high-power-density of converters,the active EMI filter(AEF)has attracted increasing interest owing to its small volume.The EMI suppression effect of the common single-stage single-sense single-injection AEF is confined because of the limited insertion loss,and the volume of the multi-stage AEF will be bulky.To solve this problem,this paper proposes a compact dual-current-injection current-sense current-compensation(DCJ-CSCC)AEF to increase the insertion loss in the entire conducted EMI frequency band,as well as considering the volume of the AEF.The structure and operating principle of the proposed AEF are introduced.Finally,taking a boost converter as an example,the effectiveness and advantages of the proposed DCJ-CSCC AEF were verified through a simulation and experiment,the results show that the proposed AEF has a better EMI suppression effect on the entire conducted EMI frequency band with a similar volume compared with existing single-injection feedforward current-sense current-compensation(FF-CSCC)and feedback current-sense current-compensation(FB-CSCC)AEFs.This paper provides a new selection for EMI suppression in DC-DC converters.
文摘A feedforward current-sense current-compensation(CSCC)active EMI filter(AEF)for the direct current-side common-mode(CM)electromagnetic interference(EMI)suppression of high-power electric vehicle traction inverters is analyzed and designed.A detailed design of the components with formulas is provided based on an analysis of the CSCC AEF,including the CSCC AEF topology and its implementation.The feedforward active filter stage was implemented using a simple current transformer and a small circuit board.Only a small passive filter with a high resonant frequency is required for high-frequency noise attenuation.The filter’s effectiveness was validated using the simulation results and experimental measurements.