期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Geomorphic signatures and active tectonics in western Saurashtra,Gujarat,India
1
作者 Bikramaditya Mondal Mery Biswas +1 位作者 Soumyajit Mukherjee Mohamedharoon A.Shaikh 《Geodesy and Geodynamics》 EI CSCD 2024年第1期82-99,共18页
Active tectonics in an area includes ongoing or recent geologic events.This paper investigates the tectonic influence on the subsidence,uplift and tilt of western Saurashtra through morphotectonic analysis of ten wate... Active tectonics in an area includes ongoing or recent geologic events.This paper investigates the tectonic influence on the subsidence,uplift and tilt of western Saurashtra through morphotectonic analysis of ten watersheds along with characteristics of relief and drainage orientation.Watersheds 7-9 to the north(N)are tectonically active,which can be linked with the North Kathiawar Fault System(NKFS)and followed by watersheds 6,10,1,4 and 5.Stream-length gradient index and sinuosity index indicate the effect of tectonic events along the master streams in watersheds 6-9.Higher R^(2)values of the linear curve fit for watershed 7 indicate its master stream is much more tectonically active than the others.The R^(2)curve fitting model and earthquake magnitude/depth analysis confirm the region to be active.The reactivation of the NKFS most likely led to the vertical movement of western Saurashtra. 展开更多
关键词 active tectonics GEOMORPHOLOGY Western Saurashtra ARCHEOLOGY North kathiawar fault system
原文传递
Relative active tectonics evaluation using geomorphic and drainage indices, in Dadra and Nagar Haveli, western India 被引量:2
2
作者 Naveen Kumar Rakesh K.Dumka +1 位作者 Kapil Mohan Sumer Chopra 《Geodesy and Geodynamics》 CSCD 2022年第3期219-229,共11页
The present study area,Dadra and Nagar Haveli,contains several lineaments and traces of active faults.The various aspect of the geomo rphic analysis,i.e.,stream length(SL) gradient,hypsometric integral(HI),basin shape... The present study area,Dadra and Nagar Haveli,contains several lineaments and traces of active faults.The various aspect of the geomo rphic analysis,i.e.,stream length(SL) gradient,hypsometric integral(HI),basin shape(BS),valley floor(VF),have been applied to evaluate the relative index of active tectonics(RIAT) of the Damanganga watershed.The high and low zones of tectonic activity have been identified based on the geomorphic analysis of the watershed.After evaluation of all indices,three classes,class IIhigh(1.3 ≤RIAT <1.5),class Ⅲ-moderate(1.5 ≤RIAT <1.8),and class Ⅳ-low(1.8 ≤RIAT),have been obtained to outline the degree/gradation of comparative tectonic activities in the study area.The appraised outcome of the RIAT dispersal is also well reinforced by the geomorphic evidence in the field.The collective outcomes of geomorphic evidence,such as stream deflection and analysis of lineament,deflection of streams,and geomorphic indices,conceal that the Damanganga watershed is affected by tectonic activity. 展开更多
关键词 active tectonics Geomorphic indices Relative index of active tectonics(RIAT) Drainage indices
原文传递
Geomorphic signatures of active tectonics in Subansiri River Basin, eastern Himalayas 被引量:1
3
作者 Diganta KUMAR Bhagawat Pran DUARAH 《Journal of Mountain Science》 SCIE CSCD 2020年第6期1523-1540,共18页
The Subansiri,a major tributary of the Brahmaputra with its catchment area(35763 km^2)spreading almost entirely in the Eastern Himalayas across almost all the major and local tectonic features in the area witnesses la... The Subansiri,a major tributary of the Brahmaputra with its catchment area(35763 km^2)spreading almost entirely in the Eastern Himalayas across almost all the major and local tectonic features in the area witnesses large numbers of seismic events.Active tectonic indices like relief and slope,drainage pattern,longitudinal profile,valley profile,hypsometry,valley asymmetry factors and transverse topographic symmetry index,stream length gradient,valley floor-height ratio extracted from SRTM 3 arcsecond data prove that the evolving basin morphology has substantial contribution from the Himalayan tectonics.Seismic data are incorporated in the study to establish the potentially active tectonic elements in the catchment area.The study shows that the western part of the Subansiri River Basin is profoundly tilted towards north in the upper catchment and towards east in the lower and middle part of the catchment.The predominant tectonic movements in the western part of the basin caused the tilting of the basin towards north in the upstream and towards east in the middle and lower parts. 展开更多
关键词 Eastern Himalayas active tectonics Subansiri GEOMORPHOMETRY SRTM DEM SEISMICITY
原文传递
Active tectonics of the eastern java based on a decade of recent continuous geodetic observation
4
作者 Retno Eka Yuni Purwaningsih Adelia Sekarsari +2 位作者 Tika Widya Sari Cecep Pratama Sidik Tri Wibowo 《Geodesy and Geodynamics》 CSCD 2022年第4期376-385,共10页
The eastern part of Java Island is transversed by major faults such as Cepu,Blumbang,Surabaya,and Waru Segment,part of the Kendeng Fault,Wonsorejo Fault,Pasuruan Fault,and Probolinggo Fault.Due to the major fault,we u... The eastern part of Java Island is transversed by major faults such as Cepu,Blumbang,Surabaya,and Waru Segment,part of the Kendeng Fault,Wonsorejo Fault,Pasuruan Fault,and Probolinggo Fault.Due to the major fault,we used decomposition of identified fault from the Global Navigation Satellite System(GNSS)observation data to identify the potential of local deformation.We analyzed surface deformation due to the effect of major fault using scaling law and elastic half-space method.We investigated the possibility of unidentified fault using strain rates based on velocity vector data before and after correcting the effect of a major fault.We found that strain calculation for principal strain value in the eastern part of Java Island is less than one microstrain/year and the dominant one with a compression pattern due to the Sunda subduction zone.The maximum shear strain rate value goes from 0.002 to 0.094 microstrain/year,and the dilatation rate value ranges from-0.141 to 0.038 microstrain/year,which correlates with the reverse of the Kendeng Fault.A higher compression pattern outside the major fault in a differential maximum shear strain rate might indicate a local fault. 展开更多
关键词 GPS FAULT DEFORMATION Strain JAVA active tectonics
原文传递
Geomorphological responses of rivers to active tectonics along the Siwalik Hills,Midwestern Nepalese Himalaya
5
作者 Indu BHATTARAI Nahid D.GANI Liang XUE 《Journal of Mountain Science》 SCIE CSCD 2021年第5期1268-1294,共27页
The Nepalese Himalaya is well known for ongoing collisional tectonics,witnessed by major historical and recent earthquakes.The Siwalik Hills in Midwestern Nepalese Himalaya are bounded by eastwest trending Main Fronta... The Nepalese Himalaya is well known for ongoing collisional tectonics,witnessed by major historical and recent earthquakes.The Siwalik Hills in Midwestern Nepalese Himalaya are bounded by eastwest trending Main Frontal Thrust(MFT)to the south and the Main Boundary Thrust(MBT)to the north.The area is dissected by numerous southwest to south-flowing bedrock rivers.This study investigates geomorphic metrics of these rivers to unravel landscape evolution and active tectonics of the Siwalik Hills.Digital Elevation Model(DEM)analysis was conducted to extract structural lineaments and longitudinal river profile and their metrics(knickpoints,Normalized Steepness Index(ksn),concavity index,and chi integral)using steam powerlaw approaches.Most of the lineaments trend eastwest like MFT.River profiles exhibit convex to double-concave shapes with upstream-propagating tectonic knickpoints that separate upstream and downstream reaches,indicating different phases of river incision.The spatial distribution of ksn shows high values along with low concavity values at the eastern part of the study area,reflecting disequilibrium conditions that are likely responding to a high uplift rate.Chi integral distribution shows a variation in drainage divide migration between the eastern and western parts of the study area.This study suggests that the rivers in the Siwalik Hills are undergoing active incision likely related to the ongoing uplift and active deformation associated with the Himalayan tectonics.The above findings can bring fresh perspectives to comprehend the neotectonic deformation and lateral variability along the Siwalik Hills landscapes within the Himalaya. 展开更多
关键词 Longitudinal river profiles Siwalik Hills Nepalese Himalaya active tectonics
原文传递
Relative active tectonic in the metamorphic rocks of the Yaounde group: insights from geomorphic indices and topographic analysis
6
作者 Jacques Bertrand ONANA Bernard NJOM +3 位作者 Franois Mvondo OWONO Mero YANNAH Thierry Abou'ou ANGO Joseph Mvondo ONDOA 《Journal of Mountain Science》 SCIE CSCD 2023年第10期2946-2974,共29页
The Yaounde Group(YG),representing the southern edge of the North Equatorial PanAfrican Belt,consists of quartzites,schists,micaschists,amphibolites,gneisses and migmatites.Tectonism has formed a landscape characteriz... The Yaounde Group(YG),representing the southern edge of the North Equatorial PanAfrican Belt,consists of quartzites,schists,micaschists,amphibolites,gneisses and migmatites.Tectonism has formed a landscape characterized by the development of linear and folded valleys and ridges,fault scarps,V-shaped valleys,incised rivers and knickpoints.These landforms constitute important markers of the regional tectonic activity,which have been computed from spatial sources such as SRTM,DEM,hydrographical networks and geomorphic indices such as AF,T,Smf,Vf,Bs,Hi,U,SI and Li.The results highlighted a mature relief consisting of asymmetric basins generated by tilting and uplift phenomena.The relative index of active tectonics(RIAT)has been estimated from an average of eight geomorphic indices evaluated on 24 subbasins,in the study area.Four classes have been defined:class 1(1.38),very high active(1.0≤RIAT<1.5);class 2(1.50-1.88),high active(1.5≤RIAT<2.0);and class 3(2.00-2.13)moderate active(2.0≤RIAT<2.5).These three classes,respectively covering 10.20%(458 km2),80.10%(3595 km2)and 9.69%(435 km2)of the study area,have shown a highly active tectonic zone,and imply the existence of a neotectonic event in the YG.This tectonic unit(YG)was also affected by the dextral NW-SE strike-slip faulting,which cross-cut the Sanaga Shear Zone(SSZ)at Ebebda and the foliation oriented NW-SE.The tilting and uplift of rocks related to Moho ascending are responsible for crustal thinning in the Cameroon basement,more important to the Adamawa Plateau from the Cretaceous age and the reactivation of existing tectonic accidents.The presence of hills,fault scarps,reverse faults,knickpoints,V and U shaped valleys and rounded mountains testify to the interaction between tectonic uplift,lithology,climate,weathering and erosion. 展开更多
关键词 LANDFORMS Geomorphic indices RIAT active tectonics Yaounde Group
原文传递
Tectonic geomorphology of Türkiye and its insights into the neotectonic deformation of the Anatolian Plate
7
作者 Yuqiao Chang Yihui Zhang Huiping Zhang 《Earthquake Research Advances》 CSCD 2024年第1期23-35,共13页
Quantitative geomorphic analyses are usually powerful in identifying active tectonics across global orogenic belts.Our present study will focus on the Anatolian Plate which hosts a lot of recent catastrophic earthquak... Quantitative geomorphic analyses are usually powerful in identifying active tectonics across global orogenic belts.Our present study will focus on the Anatolian Plate which hosts a lot of recent catastrophic earthquakes in Türkiye.Six geomorphic indices for 100 sub-basins around Türkiye have been computed including local relief,slope,normalized steepness index(k_(Sn)),hypsometric curve and integral(HI),transverse topographic symmetry factor(Tf),and the basin asymmetry factor(Af).The averaged kSnand Af values have shown four high-value anomalous zones,suggesting relatively high uplift rates featured by high river incision and regional tilting.The values of 0.35≤HI<0.6 for basins with S-shaped curves imply intensive tectonic activities along the eastern part of the North Anatolian Fault Zone(NAFZ),the Northeast Anatolian Fault Zone(NEAFZ),the East Anatolian Fault Zone(EAFZ),and the Central Anatolian Fault Zone(CAFZ).All results of the geomorphic indices analysis suggest a relatively high degree of tectonic activity in the following four areas,the Isparta Angle,the Eastern Black Sea Mountains,the South-eastern Anatolia Region,and the Central Anatolian fault zone.We further suggest that the eastern part of the NAFZ,NEAFZ,EAFZ,and CAFZ will be more active in tectonic activities,with a greater potential for strong earthquake occurrence. 展开更多
关键词 Geomorphic indices QUANTITATIVE Türkiye Tectonic activity
下载PDF
Gravitational Tectonics versus Plate Tectonics in the Himalayan Intermontane Basins: NW Himalaya
8
作者 Afroz Ahmad SHAH Nurhafizah MANAN 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第S01期3-6,共4页
The intermontane basins are some of the critical regions to investigate the formation,growth,and development of basins during the collisional orogenesis,and in the NW Himalaya several such basins are observed to have ... The intermontane basins are some of the critical regions to investigate the formation,growth,and development of basins during the collisional orogenesis,and in the NW Himalaya several such basins are observed to have formed during the latest phase of the ongoing collision between India and Eurasia(Burbank and Johnson,1982). 展开更多
关键词 gravitational tectonics active tectonics HIMALAYA normal faults deformation domains
下载PDF
Main active faults and seismic activity along the Yangtze River Economic Belt:Based on remote sensing geological survey 被引量:5
9
作者 Zhong-hai Wu Chun-jing Zhou +2 位作者 Xiao-long Huang Gen-mo Zhao Cheng-xuan Tan 《China Geology》 2020年第2期314-338,共25页
The Yangtze River Economic Belt(YREB)spans three terrain steps in China and features diverse topography that is characterized by significant differences in geological structure and presentday crustal deformation.Activ... The Yangtze River Economic Belt(YREB)spans three terrain steps in China and features diverse topography that is characterized by significant differences in geological structure and presentday crustal deformation.Active faults and seismic activity are important geological factors for the planning and development of the YREB.In this paper,the spatial distribution and activity of 165 active faults that exist along the YREB have been compiled from previous findings,using both remote-sensing data and geological survey results.The crustal stability of seven particularly noteworthy typical active fault zones and their potential effects on the crustal stability of the urban agglomerations are analyzed.The main active fault zones in the western YREB,together with the neighboring regional active faults,make up an arc fault block region comprising primarily of Sichuan-Yunnan and a“Sichuan-Yunnan arc rotational-shear active tectonic system”strong deformation region that features rotation,shear and extensional deformation.The active faults in the central-eastern YREB,with seven NE-NNE and seven NW-NWW active faults(the“7-longitudinal,7-horizontal”pattern),macroscopically make up a“chessboard tectonic system”medium-weak deformation region in the geomechanical tectonic system.They are also the main geological constraints for the crustal stability of the YREB. 展开更多
关键词 active faults and tectonic system Paleo-earthquake Regional crustal stability Seismic risk assessment Yangtze River China
下载PDF
Assessment of strong earthquake risk in the Chinese mainland from 2021 to 2030 被引量:3
10
作者 Zhigang Shao Yanqiang Wu +19 位作者 Lingyun Ji Faqi Diao Fuqiang Shi Yujiang Li Feng Long Hui Zhang Wuxing Wang Wenxin Wei Peng Wang Xiaoxia Liu Qi Liu Zhengyang Pan Xiaofei Yin Yue Liu Wei Feng Zhenyu Zou Jia Cheng Renqi Lu Yueren Xu Xi Li 《Earthquake Research Advances》 CSCD 2023年第1期81-91,共11页
The long-term earthquake prediction from 2021 to 2030 is carried out by researching the active tectonic block boundary zones in the Chinese mainland.Based on the strong earthquake recurrence model,the cumulative proba... The long-term earthquake prediction from 2021 to 2030 is carried out by researching the active tectonic block boundary zones in the Chinese mainland.Based on the strong earthquake recurrence model,the cumulative probability of each target fault in the next 10 years is given by the recurrence period and elapsed time of each fault,which are adopted from relevant studies such as seismological geology,geodesy,and historical earthquake records.Based on the long-term predictions of large earthquakes throughout the world,this paper proposes a comprehensive judgment scheme based on the fault segments with the seismic gap,motion strongly locked,sparse small-moderate earthquakes,and apparent Coulomb stress increase.This paper presents a comprehensive analysis of the relative risk for strong earthquakes that may occur in the coming 10 years on the major faults in the active tectonic block boundary zones in the Chinese mainland.The present loading rate of each fault is first constrained by geodetic observations;the cumulative displacement of each fault is then estimated by the elapsed time since the most recent strong earthquake. 展开更多
关键词 Long-term earthquake prediction Chinese mainland active tectonic block
下载PDF
Proposing a novel geo-structural model for Torbat-e-Jam-Fariman plain(Northeast of Iran),based on Geomorphic indices calculation,conjugating the field evidences
11
作者 Mohsen JAMI Alireza DOCHESHMEH GORGIJ 《Journal of Mountain Science》 SCIE CSCD 2023年第5期1385-1401,共17页
There are various faults in northern and southern margins of Torbat-e-Jam-Fariman plain which show the probability of enormous earthquake in the future.In present study the geomorphic indices contain Asymmetry Functio... There are various faults in northern and southern margins of Torbat-e-Jam-Fariman plain which show the probability of enormous earthquake in the future.In present study the geomorphic indices contain Asymmetry Function(Af),Sinuosity of mountain front(Smf),Valley floor index(Vf),Hypsometric index(Hi),Mean Axial slope of channel index(MASC)and Drainage Basin Shape(Bs),have been utilized to determine the relative tectonic activity index(IAT)to recognize,eventually,the geo-structural model of the study area.Faults and folds control the geo-structural activities of the study area,and the geomorphic indices are being affected in consequence of their activities.The intensity of these activities is different throughout the plain.There are many geomorphic evidences,related to active transform fault which are detectable all over the study area such as deviated rivers,quaternary sediments transformation,fault traces.Therefore,recognition of geo-structural model of the study area is extremely vital.Field study,then,approved the results of geomorphic indices calculation in determining the geo-structural model of the study area.Results depicted that the geostructural model of the study area is a kind of Horsetail splay form which is in accordance to the relative tectonic activity of the study area.Based on the above mentioned results it can be predicted that the splays are the trail of Neyshabour fault. 展开更多
关键词 FAULT Geo-structural Model Relative tectonic activity Geomorphic indices Horsetail Splay
原文传递
Sedimentary elements,evolutions and controlling factors of the Miocene channel system:a case study of the deep-water Taranaki Basin in New Zealand
12
作者 Guangxu Wang Wei Wu +5 位作者 Changsong Lin Quan Li Xiaoming Zhao Yongsheng Zhou Weiqing Liu Shiqin Liang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第11期44-58,共15页
Deep-water channel systems are important petroleum reservoirs,and many have been discovered worldwide.Understanding deep-water channel sedimentary elements and evolution is helpful for deep-sea petroleum exploration a... Deep-water channel systems are important petroleum reservoirs,and many have been discovered worldwide.Understanding deep-water channel sedimentary elements and evolution is helpful for deep-sea petroleum exploration and development.Based on high-resolution 3D seismic data,the Miocene channel system in the deep-water Taranaki Basin,New Zealand,was analyzed by using seismic interpretation techniques such as interlayer attribute extraction and strata slicing.The channel system was divided into five composite channels(CC-I to CC-V)according to four secondary level channel boundaries,and sedimentary elements such as channels,slump deposits,inner levees,mass transport deposits,and hemipelagic drape deposits were identified in the channel system.The morphological characteristics of several composite channels exhibited stark variances,and the overall morphology of the composite channels changed from relatively straight to highly sinuous to relatively straight.The evolution of the composite channels involved a gradual and repeated process of erosion and filling,and the composite channels could be divided into three evolutionary stages:initial erosion-filling,later erosion-filling(multistage),and channel abandonment.The middle Miocene channel system may have formed as a consequence of combined regional tectonic activity and global climatic change,and its intricate morphological alterations may have been influenced by the channel's ability to self-regulate and gravity flow properties.When studying the sedimentary evolution of a large-scale deep-water channel system in the Taranaki Basin during the Oligocene-Miocene,which transitioned from a passive margin to plate convergence,it can be understood how tectonic activity affected the channel and can also provide a theoretical reference for the evolution of the deepwater channels in areas with similar tectonic conversion environments around the world. 展开更多
关键词 deep-water channel system channel geomorphology sedimentary evolution climate and region tectonic activities deep-water Taranaki Basin
下载PDF
Late Quaternary fluvial terrace formation in the Luan River drainage basin,north China and its possible linkages with climate change and tectonic activation
13
作者 Yu-chen Tian Xu-jiao Zhang +5 位作者 Zhi-qiang Yin Hai Shao Ming-xu Gu Yingying-Ding Chao Peng Xiang-ge Zhang 《China Geology》 CAS CSCD 2023年第3期395-408,共14页
The Luan River is the most important water system in north-eastern Hebei Province,China and is located in the transitional zone of the Eastern Yan Mountains,North China Plain and Songliao Plain.The well-developed rive... The Luan River is the most important water system in north-eastern Hebei Province,China and is located in the transitional zone of the Eastern Yan Mountains,North China Plain and Songliao Plain.The well-developed river terraces of its tributary,the Yixun River,provide excellent information for studying neotectonics and climate change.There are seven terraces in the lower reaches of the Yixun River,numbered T7-T1.The optically stimulated luminescence dating results of 23 samples show that terraces T7-T2 formed at 111.36±5.83 ka,78.20±4.45 ka,65.29±4.15 ka,56.44±3.07 ka,40.08±2.66 ka,and 13.14±0.76 ka,respectively.A comparison with the oxygen isotope curves of deep-sea sediments reveals that the sediment formation of each terrace corresponded to cold periods of marine isotope stages MIS 4 and MIS 2 and the relatively cold periods of MIS 5e,MIS 3,and MIS 1.Since the Late Pleistocene,the incision rate of the Yixun River has ranged from 0.371-1.740 mm/a.During the formation of T7-T6,T5-T4,T4-T3,and T3-T2,the incision rate was low.However,in the two stages during which T6-T5 and T2-T1 formed(13.14±0.76 ka to 0.58±0.08 ka and 10.79±0.64 ka to 0.16±0.01 ka),these rates reached 1.554 mm/a and 1.592-1.740 mm/a,respectively.At approximately 30 ka,the activity of the Langying Fault increased,leading to footwall uplift.The river gathered in the north of Langying to form the ancient Erdaowan Lake,which resulted in the drying of the river in the lower reaches of the Yixun River during the last glacial maximum without forming river deposits.In the Early Holocene,headward erosion in the lower reaches of the Yixun River was enhanced,which resulted in the disappearance of the lake,and incised meandering formed due to increased neotectonism.Based on the analyses of river incision and the formation of ancient lakes and incised meandering,it was inferred that there have been three periods of strong tectonism in the river basin since the Late Pleistocene. 展开更多
关键词 River terrace Paleoclimate change Tectonic activation Optically stimulated luminescence dating Marine isotope stage Last glacial maximum NEOtectonics GEOMORPHOLOGY Geological survey engineering North China Plain
下载PDF
The advance in obtaining fault slip rate of strike slip fault-A review 被引量:2
14
作者 Jinrui Liu Zhikun Ren +2 位作者 Wei Min Guanghao Ha Jinghao Lei 《Earthquake Research Advances》 CSCD 2021年第4期1-8,共8页
Slip rate along the major active fault is an important parameter in the quantitative study of active tectonics.It is the average rate of fault slip during a certain period of time,reflecting the rate of strain energy ... Slip rate along the major active fault is an important parameter in the quantitative study of active tectonics.It is the average rate of fault slip during a certain period of time,reflecting the rate of strain energy accumulation on the fault zone.It cannot only be directly applied to evaluate the activity of the fault,the probabilistic seismic hazard analysis,but also important basic data for the study of geodynamics.However,due to the nonstandardized process of obtaining fault slip rates for a given strike-slip fault,the results could be diverse based on various methods by different researchers.In this review,we analyzed the main advances in the approaches to obtain fault slip rate.We found that there are four main sources affecting the final results of slip rate:the displacement along the fault,the dating of the corresponding displacement,the fitting of the displacement and corresponding dating results,and paleoslip analysis.The main advances in obtaining fault slip rates are based on improving the reli-ability of the above four main factors.To obtain a more reasonable and reliable slip rate for a given fault,it is necessary to select a suitable method according to the specific situation. 展开更多
关键词 Slip rate Strike-slip fault active tectonics Monte Carlo Paleoslip analysis
下载PDF
Assessment of Recent Tectonic Activity along the Yamuna Basin, Garhwal Region, NW-Himalaya, India: Based on Morphotectonic Analysis
15
作者 Prerna Gahlaut Ramesh Chandra Patel +2 位作者 Ramamoorthy Ayyamperumal Madhusudan Sati Dinesh Chandra Nainwal 《Open Journal of Geology》 2021年第12期734-755,共22页
Decoupling between climate and tectonics, transform the elevation of earth surface regionally by denudation and displacement of land. To extract the tectonic footprints on morphology of landform, geormophometry is wid... Decoupling between climate and tectonics, transform the elevation of earth surface regionally by denudation and displacement of land. To extract the tectonic footprints on morphology of landform, geormophometry is widely accepted tool due to visible responses in Drainage architecture to an intense tectonic environment. The present morphology of Yamuna basin in the Garhwal Himalaya, India is a result of continuing crustal deformation;erosion and deposition in the area. The drainage system and geomorphic expression of topography have been significantly influenced by active tectonics in this basin. In present study, for numerical modelling to detect the influence of tectonic signals on landform, we used morphotectonic parameters, to gradient index (SL), valley floor height to width ratio (Vf), asymmetry factor (Af), basin shape index (BS) and hypsometric integral (HI), extracted from SRTM DEM with resolution of 30 m. All these morphotectonic parameters are integrated to produce an index of relative active tectonics (IRAT). The Yamuna basin is classified into three groups based on IRAT, very high (<2.0);moderate (2.0 - 2.25) and low (>2.25) based on the degree of tectonic activity. Result shows approx. 56% of Yamuna basin experience high tectonic activity. This along strike deformation pattern pronouncedly emulates subsurface geometry based tectonic model. 展开更多
关键词 active tectonics Landform Evolution Morphotectonic Parameters LANDSLIDE IRAT
下载PDF
Geological Study of Tangi Mahi-Par Mountain Range along Kabul Jalalabad Road, Afghanistan 被引量:3
16
作者 Hafizullah Rasouli Mohammad Hasib Sarwari +1 位作者 Khairuddin Rasikh Said Amin Hashimi 《Open Journal of Geology》 2020年第10期971-980,共10页
Tangi Mahi-par is a fault valley from previews geological period (Pleistocene) where the Kabul basin was a lake and occupied by water, and after the formation of Tangi Mahi-par fault valley, water was drained from thi... Tangi Mahi-par is a fault valley from previews geological period (Pleistocene) where the Kabul basin was a lake and occupied by water, and after the formation of Tangi Mahi-par fault valley, water was drained from this way. Therefore, this research is essential to elucidate the different rocks types and structures, with no or scarce previous research’s in this mountainous area. The main objective of this study is to selected rock type, rocky structures and different sizes of river sediments transported by rivers discharge from the previous geological periods. There are different types of sediments, terrace remnants, rocks and geological structures which are generally consist of Limestone and Gneiss, where the limestone is likely belonging to the Thythes ocean remnants in Afghanistan and contains Ammonites fossils. In some parts volcanic breccias, it shows the old volcanic eruptions, Stalactite and stalagmite Carbonitic sediments related to limestones are also present there. In addition, there are different types of geological structures such as Anticline, Syncline, dyke, Sill, Apophysis, Graben and Horst. Unconformities and horizontal layers related to Khengal and Cottagay series passing from this area are located one by another. 展开更多
关键词 Tectonic Activities LIMESTONE GNEISS GRABEN HORST
下载PDF
Evaluation of relative tectonic activity along the Priene-Sazli Fault(Soke Basin,southwest Anatolia):Insights from geomorphic indices and drainage analysis 被引量:1
17
作者 Savas TOPAL 《Journal of Mountain Science》 SCIE CSCD 2019年第4期909-923,共15页
The West Anatolia Extensional Zone, which has a width of about 300 km, is located within the Alpine-Himalayan belt and is one of the regions with intense seismic activity in the world. The most important geomorphologi... The West Anatolia Extensional Zone, which has a width of about 300 km, is located within the Alpine-Himalayan belt and is one of the regions with intense seismic activity in the world. The most important geomorphological structures in this area are three main graben structures resulting from regional N-S extension since the Early Miocene. These structures are the E-W trending Büyük Menderes, Kü?ük Menderes, and Gediz grabens. S?ke Basin is located at the SW end of the Büyük Menderes graben. The lineaments which control the NW of S?ke Basin have a length of approximately 40 km and have been defined as the Priene-Sazl? Fault(PSF). The PSF is seismically active, and the last large earthquake(the S?ke-Balat earthquake; Ms: 6.8) was produced on July 16 th of 1955. The ancient city of Priene, which was located in the study area, suffered from destructive earthquakes(in the 4 th century and 2 nd century BC, in the 2 nd century AD, during the Byzantine period and after the 12 th century BC). This study aims to reveal the effect of the PSF on the morphotectonic evolution of the region and the relative tectonic activity of the fault. To this end, it was the first time the stream length gradient index(SL: 130-1303), mountain-front sinuosity(Smf: 1.15-1.96), valley floor height and valley width ratio(Vf: 0.27-1.66), drainage basin asymmetry(AF: 0.15-0.76), hypsometric curve(HC) and hypsometric integral(HI: 0.22-0.86) and basin shape index(Bs: 1.04-5.75) along the mountain front that is formed by the PSF. Using a combination of the mountain-front sinuosity(Smf), valley floor height and valley width ratio(Vf), it is found that the uplift ratio in the region is not less than 0.05 mm/yr and the relative tectonic activity of PSF is high. According to the relative tectonic activity index(Iat) obtained from geomorphic indices, the southwest part of the PSF is relatively more active than the northeast part. As a result, I posit that the PSF has the potential to produce earthquakes in the future similarly to those that were produced in the past, and that the most destructive earthquakes will likely occur on the southwest segments of the fault according to geomorphic indices. 展开更多
关键词 Geomorphic indices Tectonic activity Earthquake Priene-Sazli Fault Soke basin Western Anatolia
原文传递
Regional Hypsometric Analysis of the Jordan Rift Drainage Basins (Jordan) Using Geographic Information System 被引量:2
18
作者 Yahya Farhan Rami Mousa +1 位作者 Arij Dagarah Durgham Shtaya 《Open Journal of Geology》 2016年第10期1312-1343,共32页
This research is intended to assess the regional pattern of hypsometric curves (HCs) and hypsometric integrals (HIs) for the watersheds draining into the Jordan Rift (River Jordan, the Dead Sea, and Wadi Araba watersh... This research is intended to assess the regional pattern of hypsometric curves (HCs) and hypsometric integrals (HIs) for the watersheds draining into the Jordan Rift (River Jordan, the Dead Sea, and Wadi Araba watersheds). Hypsometric analysis was performed on 22 drainage basins using ASTER DEM (30 m resolution) and GIS. The area-elevation ratio method was utilized to extract the hypsometric integral values within a GIS environment. A prominent variation exists in the HC shapes and HI values. The highest hypsometric values are found for the Dead Sea ( = 0.87) and River Jordan ( = 0.77) watersheds. Whereas the lowest values ( = 0.51) characterized Wadi Araba catchments, except Wadi Nukhaileh (lower Wadi Araba) which yields an HI value of 0.26. Seventeen HCs pertained to the River Jordan and the Dead Sea watersheds evince remarkably upward convex shapes indicating that such drainage basins are less eroded, and at the youth-stage of the geomorphic cycle of erosion. Catchments draining to Wadi Araba are of intermediate HI values (0.41 - 0.58) which are associated with a balance, or dynamic equilibrium between erosion and tectonic processes. Accordingly, they correspond to a late mature stage of geomorphic development. Additionally, Wadi Nukhaileh yields the lowest HI value (0.26) and is associated with highly eroded terrain of late mature geomorphic evolution, approaching an old stage therefore, with distorted concave upward curves. High HI values indicate that these watersheds have been subjected to tectonic uplift, down faulting of the Rift and intense rejuvenation. Differences in HI values can be attributed to disparity in tectonic uplift rate, base level heights, and mean heights of the River Jordan watersheds, the Dead Sea and Wadi Araba watersheds, and variation in lithology, which caused noticeable differences in rejuvenation processes, and channel incision. Regression analysis reveals that R<sup>2</sup> values which represent the degree of control of driving parameters on HI, are positive and generally low (ranging from 0.026 to 0.224) except for the height of base level (m) parameter which contributes 0.42 (significant at 0.1% level). Such results mean that the height of base level has a significant at 0.1% level. It is obvious that the most crucial driving morphometric factor influencing HI values of the Jordan Rift drainage basins, is the height of base level (m). 展开更多
关键词 Hypsometric Analysis Tectonic Activity GIS ASTER DEM Regression Analysis Jordan Rift
下载PDF
Tectonic control on slow-moving Andean landslides in the Colca Valley,Peru
19
作者 Krzysztof GAIDZIK Jerzy zABA Justyna CIESIELCZUK 《Journal of Mountain Science》 SCIE CSCD 2020年第8期1807-1825,共19页
The Colca Valley in the Central Andes is a region characterized by the occurrence of large slow-moving landslides and a high level of seismic activity.In this study,we aimed to determine passive and active tectonic co... The Colca Valley in the Central Andes is a region characterized by the occurrence of large slow-moving landslides and a high level of seismic activity.In this study,we aimed to determine passive and active tectonic control on the formation of selected five large landslides in the Colca Valley and to assess geohazard associated with these features.For that purpose,we performed a post-landslide field survey,applied remote sensing techniques,and obtained eyewitness accounts.Recently,the need to understand mass movement processes in this region is even higher due to the establishment of the Colca y Volcanes de Andagua Geopark(Colca and Andagua Volcanoes Geopark).Our results suggest that the studied landslides usually represent a complex failure mechanism,dominated by translational sliding or rotational displacements,commonly associated with the formation of horst-and-graben like structures.We found a spatial correlation between the distribution of landslides and inherited fault network.The head scarps appear to be limited by the WNW-to NW-striking faults,whereas the lateral extent of some of the reported features seems to be connected with the NNE-striking normal faults,common in both,the Mesozoic strata and the Pleistocene-Holocene deposits. 展开更多
关键词 LANDSLIDE GEOHAZARD Tectonic activity Earthquake Central Andes Peru
原文传递
Quaternary alluvial fan dynamics of the Jaldhaka basin
20
作者 Adrija RAHA Mery BISWAS 《Journal of Mountain Science》 SCIE CSCD 2022年第8期2160-2179,共20页
Across the Himalayan foreland area,alluvial fans respond to fluvial depositional landforms created by active tectonics and are incorporated within hydro-sediment processes.Each tributary of the master stream has its w... Across the Himalayan foreland area,alluvial fans respond to fluvial depositional landforms created by active tectonics and are incorporated within hydro-sediment processes.Each tributary of the master stream has its water and sediment to discharge,which assists in initiating several mesolevel fans in response to the active tectonics in Jaldhaka basin.Along the mountain front,active MBT(Main Boundary Thrust),MFT(Main Frontal Thrust)and lineaments(parallel and transverse to Himalaya)have governed the tectonically active Quaternary foreland area where numerous meso-level fans have developed.The study aims to estimate the tectonic activeness of each meso-fan using the morphotectonic indicators.The tributaries of the Jaldhaka River are permuted to the recent tectonism or neotectonics to form each meso fan with its basin displaying the varying degree of their activeness and aggradation system.Statistical methods like technique for order performance by similarity to ideal solution(TOPSIS)and VIKOR(Vlse Kriterijumska Optimizacija Kompromisno Resenje)that specify multicriteria optimization and compromise solution,in Serbian have ranked the Fan 2 as mostly active and Fan 4 is comparatively tectonically stable.The hydro-sediment characteristics reveal the topographic spatial dynamics of Fan 4 where lobe 3 has elevated from 1984-2014.The XRD analysis specifies the scientific key in response to the dominance of dolomite in the aggraded elevated bed sediments carried by the Rohtikhola River.The conceptual fan models of Fan 2and 4 display the fan development phases through four stages.It has clearly defined the extension of the fan lobes of Fan 2 and 4.It is summarized that within a common climatic zone and similar neo-tectonic setting,meso-level fans have differential morphotectonic signatures with dynamic aggradation processes. 展开更多
关键词 HIMALAYA Tectonic activeness Fan dynamics Hydro sediment interaction
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部