期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Learning Specialized Activation Functions for Physics-Informed Neural Networks
1
作者 Honghui Wang Lu Lu +1 位作者 Shiji Song Gao Huang 《Communications in Computational Physics》 SCIE 2023年第9期869-906,共38页
Physics-informed neural networks(PINNs)are known to suffer from optimization difficulty.In this work,we reveal the connection between the optimization difficulty of PINNs and activation functions.Specifically,we show ... Physics-informed neural networks(PINNs)are known to suffer from optimization difficulty.In this work,we reveal the connection between the optimization difficulty of PINNs and activation functions.Specifically,we show that PINNs exhibit high sensitivity to activation functions when solving PDEs with distinct properties.Existing works usually choose activation functions by inefficient trial-and-error.To avoid the inefficient manual selection and to alleviate the optimization difficulty of PINNs,we introduce adaptive activation functions to search for the optimal function when solving different problems.We compare different adaptive activation functions and discuss their limitations in the context of PINNs.Furthermore,we propose to tailor the idea of learning combinations of candidate activation functions to the PINNs optimization,which has a higher requirement for the smoothness and diversity on learned functions.This is achieved by removing activation functions which cannot provide higher-order derivatives from the candidate set and incorporating elementary functions with different properties according to our prior knowledge about the PDE at hand.We further enhance the search space with adaptive slopes.The proposed adaptive activation function can be used to solve different PDE systems in an interpretable way.Its effectiveness is demonstrated on a series of benchmarks.Code is available at https://github.com/LeapLabTHU/AdaAFforPINNs. 展开更多
关键词 Partial differential equations deep learning adaptive activation functions physicsinformed neural networks
原文传递
Solving nonlinear soliton equations using improved physics-informed neural networks with adaptive mechanisms
2
作者 Yanan Guo Xiaoqun Cao Kecheng Peng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第9期36-50,共15页
Partial differential equations(PDEs)are important tools for scientific research and are widely used in various fields.However,it is usually very difficult to obtain accurate analytical solutions of PDEs,and numerical ... Partial differential equations(PDEs)are important tools for scientific research and are widely used in various fields.However,it is usually very difficult to obtain accurate analytical solutions of PDEs,and numerical methods to solve PDEs are often computationally intensive and very time-consuming.In recent years,Physics Informed Neural Networks(PINNs)have been successfully applied to find numerical solutions of PDEs and have shown great potential.All the while,solitary waves have been of great interest to researchers in the field of nonlinear science.In this paper,we perform numerical simulations of solitary wave solutions of several PDEs using improved PINNs.The improved PINNs not only incorporate constraints on the control equations to ensure the interpretability of the prediction results,which is important for physical field simulations,in addition,an adaptive activation function is introduced.By introducing hyperparameters in the activation function to change the slope of the activation function to avoid the disappearance of the gradient,computing time is saved thereby speeding up training.In this paper,the m Kd V equation,the improved Boussinesq equation,the Caudrey–Dodd–Gibbon–Sawada–Kotera equation and the p-g BKP equation are selected for study,and the errors of the simulation results are analyzed to assess the accuracy of the predicted solitary wave solution.The experimental results show that the improved PINNs are significantly better than the traditional PINNs with shorter training time but more accurate prediction results.The improved PINNs improve the training speed by more than 1.5 times compared with the traditional PINNs,while maintaining the prediction error less than 10~(-2)in this order of magnitude. 展开更多
关键词 physics-informed neural networks adaptive activation function partial differential equations solitary wave
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部