Loss of coolant accident(LOCA),loss of fluid accident(LOFA),and loss of vacuum accident(LOVA)are the most severe accidents that can occur in nuclear power reactors(NPRs).These accidents occur when the reactor loses it...Loss of coolant accident(LOCA),loss of fluid accident(LOFA),and loss of vacuum accident(LOVA)are the most severe accidents that can occur in nuclear power reactors(NPRs).These accidents occur when the reactor loses its cooling media,leading to uncontrolled chain reactions akin to a nuclear bomb.This article is focused on exploring methods to prevent such accidents and ensure that the reactor cooling system remains fully controlled.The reactor coolant pump(RCP)has a pivotal role in facilitating heat exchange between the primary cycle,which is connected to the reactor core,and the secondary cycle associated with the steam generator.Furthermore,the RCP is integral to preventing catastrophic events such as LOCA,LOFA,and LOVA accidents.In this study,we discuss the most critical aspects related to the RCP,specifically focusing on RCP control and RCP fault diagnosis.The AI-based adaptive fuzzy method is used to regulate the RCP’s speed and torque,whereas the neural fault diagnosis system(NFDS)is implemented for alarm signaling and fault diagnosis in nuclear reactors.To address the limitations of linguistic and statistical intelligence approaches,an integration of the statistical approach with fuzzy logic has been proposed.This integrated system leverages the strengths of both methods.Adaptive fuzzy control was applied to the VVER 1200 NPR-RCP induction motor,and the NFDS was implemented on the Kori-2 NPR-RCP.展开更多
To control the robot and track the designed trajectory with uncertain disturbances in a specified precision range, an adaptive fuzzy control scheme for the robot arm manipulator is discussed. The controller output err...To control the robot and track the designed trajectory with uncertain disturbances in a specified precision range, an adaptive fuzzy control scheme for the robot arm manipulator is discussed. The controller output error method (COEM) is used to design the adaptive fuzzy controller. A few or all of the parameters of the controller are adjusted by using the gradient descent algorithm to minimize the output error. COEM is adopted in the adaptive control system for the robot arm manipulator with 5-DOF. Simulation results show the effectiveness of the method and the real time adjustment of the parameters.展开更多
In this paper, we propose an adaptive fuzzy dynamic surface control(DSC) scheme for single-link flexible-joint robotic systems with input saturation. A smooth function is utilized with the mean-value theorem to deal w...In this paper, we propose an adaptive fuzzy dynamic surface control(DSC) scheme for single-link flexible-joint robotic systems with input saturation. A smooth function is utilized with the mean-value theorem to deal with the difficulties associated with input saturation. An adaptive DSC design with an auxiliary first-order filter is used to solve the "explosion of complexity"problem. It is proved that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded, and the tracking error eventually converges to a small neighborhood around zero. The main advantage of the proposed method is that only one adaptation parameter needs to be updated,which reduces the computational burden significantly. Simulation results demonstrate the feasibility of the proposed scheme and the comparison results show that the improved DSC method can reduce the computational burden by almost two thirds in comparison with the standard DSC method.展开更多
For electro-discharge machining, only in the optimum state could the highest material removal rate be realized. In practical machining process, the timely elevation of the tool electrode is needed to eliminate chippin...For electro-discharge machining, only in the optimum state could the highest material removal rate be realized. In practical machining process, the timely elevation of the tool electrode is needed to eliminate chipping, which ordinarily occupies quite a lot of time. Therefore, besides the control of the machining parameters, the control of the optimum discharge gap and the conversion of different machining states is also needed. In this paper, the adaptive fuzzy control system of servomechanism for EDM combined with ultrasonic vibration is studied, the servomechanism of which is composed of the stepping motor comprising variable steps and the inductive synchronizer. The fuzzy control technology is used to realize the control of the frequency and the step of the servomechanism. The adaptive fuzzy controller has three inputs and two outputs, which can well meet the actual control requirements. The constitution of the fuzzy control regulation for the step frequency is the key to the design of the whole fuzzy control system of the servomechanism. The step frequency is mainly determined by the position error and the change rate of the position error. When the value of the position error is high or medium, the controlled parameters are selected to eliminate the error; when the position error is lower, the controlled parameters are selected to avoid the over-orientation and thus keep the stability of the system. According to these, a fuzzy control table is established in advanced, which is used to express the relations between the fuzzy input parameters and the fuzzy output parameters. The input parameters and the output parameters are all expressed by the level-values in fuzzy field. Therefore, the output parameters used for control can be obtained for the fuzzy control table according to the detected actual input parameters, by which the EDM combined with ultrasonic vibration is improved and the machining efficiency is increased. In addition, a stimulation program is designed by means of Microsoft Visual Basic展开更多
This paper proposes a new adaptive post-filtering algorithm to remove coding artifacts in block-based video coder. The proposed method concentrates on blocking and ringing artifacts removal. For de-blocking, the block...This paper proposes a new adaptive post-filtering algorithm to remove coding artifacts in block-based video coder. The proposed method concentrates on blocking and ringing artifacts removal. For de-blocking, the blocking strength is identified to determine the filtering range, and the maximum quantization parameter of the image is used to adapt the 1D fuzzy filter. For de-ringing, besides the edge detection, a complementary ringing detection method is proposed to locate the neglected ringing blocks, and the gradient threshold is adopted to adjust the parameter of 2D fuzzy filter. Experiments are performed on the MPEG-4 sequences. Compared with other methods, the proposed one achieves better detail preservation and artifacts removal performance with lower computational cost.展开更多
According to a type of normal nonlinear system, an indirect adaptive fuzzy (IAF) controller has been applied to those systems where no accurate mathematical models of the systems under control are available. To sati...According to a type of normal nonlinear system, an indirect adaptive fuzzy (IAF) controller has been applied to those systems where no accurate mathematical models of the systems under control are available. To satisfy with system performance, an indirect accelerated adaptive fuzzy (IAAF) controller is proposed, and its general form is presented. The general form IAAF controller ensures necessary control criteria and system's global stability using Lyapunov Theorem. It has been proved that the close-loop system error converges to a small neighborhood of equilibrium point. The optimal IAAF controller is derived to guarantee the process's shortest settling time. Simulation results indicate the IAAF controller make the system more stable, accurate, and fast.展开更多
A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a ...A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a high-gain observer is used to estimate the derivatives of the system output. The closed-loop system is proven to be semiglobally uniformly ultimately bounded. In addition, it is shown that if the approximation accuracy of the fuzzy logic system is high enough and the observer gain is chosen sufficiently large, an arbitrarily small tracking error can be achieved. Simulation results verify the effectiveness of the newly designed scheme and the theoretical discussion.展开更多
On the simple continuously variable transmission (CVT) driveline model, the design of adaptive fuzzy control system for CVT vehicle is presented. The adaptive fuzzy control system consists of a scaling factor self-t...On the simple continuously variable transmission (CVT) driveline model, the design of adaptive fuzzy control system for CVT vehicle is presented. The adaptive fuzzy control system consists of a scaling factor self-tuning fuzzy-PI throttle controller, and a hybrid fuzzy-PID CVT ratio and brake controller. The presented adaptive fuzzy control strategy is vehicle model independent, which depends only on the instantaneous vehicle states, but does not depend on vehicle parameters. So it has good robustness against uncertain vehicle parameters and exogenous load disturbance. Simulation results show that the proposed adaptive fuzzy strategy has good adaptability and practicality value.展开更多
In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and singleoutput (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unkn...In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and singleoutput (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unknown high-frequency gain sign, and without the measurements of the states. In the backstepping recursive design, fuzzy logic systems are employed to approximate the unknown smooth nonlinear functions, K-filters is designed to estimate the unmeasured states, and Nussbaum gain functions are introduced to solve the problem of unknown sign of high-frequency gain. By combining adaptive fuzzy control theory and adaptive backstepping design, a stable adaptive fuzzy output feedback control scheme is developed. It has been proven that the proposed adaptive fuzzy robust control approach can guarantee that all the signals of the closed-loop system are uniformly ultimately bounded and the tracking error can converge to a small neighborhood of the origin by appropriately choosing design parameters. Simulation results have shown the effectiveness of the proposed method.展开更多
The operating temperature of a solid oxide fuel cell (SOFC) stack is a very important parameter to be controlled, which impacts the performance of the SOFC due to thermal cycling. In this paper, an adaptive fuzzy cont...The operating temperature of a solid oxide fuel cell (SOFC) stack is a very important parameter to be controlled, which impacts the performance of the SOFC due to thermal cycling. In this paper, an adaptive fuzzy control method based on an affine nonlinear temperature model is developed to control the temperature of the SOFC within a specified range. Fuzzy logic systems are used to approximate nonlinear functions in the SOFC system and an adaptive technique is employed to construct the controller. Compared with the traditional fuzzy and proportion-integral-derivative (PID) control, the simulation results show that the designed adaptive fuzzy control method performed much better. So it is feasible to build an adaptive fuzzy controller for temperature control of the SOFC.展开更多
This paper presents a robust output feedback control method for uncertain chaotic systems, which comprises a nonlinear inversion-based controller with a fuzzy robust compensator. The proposed controller eliminates the...This paper presents a robust output feedback control method for uncertain chaotic systems, which comprises a nonlinear inversion-based controller with a fuzzy robust compensator. The proposed controller eliminates the unknown nonlinear function by using a fuzzy system, whose inputs are not the state variables but feedback error signals. The underlying stability analysis as well as parameter update law design are carried out by using the Lyapunov-based technique. The proposed method indicates that the nonlinear inversion-based control approach can also be applied to uncertain chaotic systems. Theoretical results are illustrated through two simulation examples.展开更多
In this paper, synchronization for a class of uncertain fractional-order neural networks with external disturbances is discussed by means of adaptive fuzzy control. Fuzzy logic systems, whose inputs are chosen as sync...In this paper, synchronization for a class of uncertain fractional-order neural networks with external disturbances is discussed by means of adaptive fuzzy control. Fuzzy logic systems, whose inputs are chosen as synchronization errors, are employed to approximate the unknown nonlinear functions. Based on the fractional Lyapunov stability criterion, an adaptive fuzzy synchronization controller is designed, and the stability of the closed-loop system, the convergence of the synchronization error, as well as the boundedness of all signals involved can be guaranteed. To update the fuzzy parameters, fractional-order adaptations laws are proposed. Just like the stability analysis in integer-order systems, a quadratic Lyapunov function is used in this paper. Finally, simulation examples are given to show the effectiveness of the proposed method.展开更多
An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membe...An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membership functions in fuzzy logic systems are adjusted according to adaptive laws for the purpose of controlling the plant to track a reference trajectory. It is proved that the scheme can not only guarantee the boundedness of the input and output of the closed-loop system, but also make the tracking error converge to a small neighborhood of the origin. Simulation results indicate the effectiveness of this scheme.展开更多
A novel fuzzy terminal sliding mode control (FTSMC) scheme is proposed for position tracking of a class of second-order nonlinear uncertain system. In the proposed scheme, we integrate input-output linearization tec...A novel fuzzy terminal sliding mode control (FTSMC) scheme is proposed for position tracking of a class of second-order nonlinear uncertain system. In the proposed scheme, we integrate input-output linearization technique to cancel the nonlinearities. By using a function-augmented sliding hyperplane, it is guaranteed that the output tracking error converges to zero in finite time which can be set arbitrarily. The proposed scheme eliminates reaching phase problem, so that the closed-loop system always shows invariance property to parameter uncertainties. Fuzzy logic systems are used to approximate the unknown system functions and switch item. Robust adaptive law is proposed to reduce approximation errors between true nonlinear functions and fuzzy systems, thus chattering phenomenon can be eliminated. Stability of the proposed control scheme is proved and the scheme is applied to an inverted pendulum system. Simulation studies are provided to confirm performance and effectiveness of the proposed control approach.展开更多
In order to suppress the influence of uncertain factors on robot system and enable an uncertain robot system to track the reference input accurately,a strategy of combining composite nonlinear feedback(CNF)control and...In order to suppress the influence of uncertain factors on robot system and enable an uncertain robot system to track the reference input accurately,a strategy of combining composite nonlinear feedback(CNF)control and adaptive fuzzy control is studied,and a robot CNF controller based on adaptive fuzzy compensation is proposed.The key of this strategy is to use adaptive fuzzy control to approach the uncertainty of the system online,as the compensation term of the CNF controller,and make full use of the advantages of the two control methods to reduce the influence of uncertain factors on the performance of the system.The convergence of the closed-loop system is proved by feedback linearization and Lyapunov theory.The final simulation results confirm the effectiveness of this plan.展开更多
Multi-joint manipulator systems are subject to nonlinear influences such as frictional characteristics,random disturbances and load variations.To account for uncertain disturbances in the operation of manipulators,we ...Multi-joint manipulator systems are subject to nonlinear influences such as frictional characteristics,random disturbances and load variations.To account for uncertain disturbances in the operation of manipulators,we propose an adaptive manipulator control method based on a multi-joint fuzzy system,in which the upper bound information of the fuzzy system is constant and the state variables of the manipulator control system are measurable.The control algorithm of the system is a MIMO(multi-input-multi-output)fuzzy system that can approximate system error by using a robust adaptive control law to eliminate the shadow caused by approximation error.It can ensure the stability of complex manipulator control systems and reduce the number of fuzzy rules required.Comparison of experimental and simulation data shows that the controller designed using this algorithm has highly-precise trajectory-tracking control and can control robotic systems with complex characteristics of non-linearity,coupling and uncertainty.Therefore,the proposed algorithm has good practical application prospects and promotes the development of complex control systems.展开更多
We propose a novel approach called adaptive fuzzy ant-based routing (AFAR), where a group of intelligent agents (or ants) builds paths between a pair of nodes, exploring the network concurrently and exchanging obtaine...We propose a novel approach called adaptive fuzzy ant-based routing (AFAR), where a group of intelligent agents (or ants) builds paths between a pair of nodes, exploring the network concurrently and exchanging obtained information to up-date the routing tables. Routing decisions can be made by the fuzzy logic technique based on local information about the current network state and the knowledge constructed by a previous set of behaviors of other agents. The fuzzy logic technique allows multiple constraints such as path delay and path utilization to be considered in a simple and intuitive way. Simulation tests show that AFAR outperforms OSPF, AntNet and ASR, three of the currently most important state-of-the-art algorithms, in terms of end-to-end delay, packet delivery, and packet drop ratio. AFAR is a promising alternative for routing of data in next generation networks.展开更多
A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of ...A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of CFS is subjected to unknown load characteristics of rock or soil; in addition,the geological condition is time-varying.Due to the complex load characteristics of rock or soil,the feeding velocity of TC is related to geological conditions.What is worse,its dynamic model is subjected to uncertainties and its function is unknown.To deal with the particular characteristics of CFS,a novel adaptive fuzzy integral sliding mode control(AFISMC) was designed for feeding pressure control of CFS,which combines the robust characteristics of an integral sliding mode controller and the adaptive adjusting characteristics of an adaptive fuzzy controller.The AFISMC feeding pressure controller is synthesized using the backstepping technique.The stability of the overall closed-loop system consisting of the adaptive fuzzy inference system,integral sliding mode controller and the cutter feeding system is proved using Lyapunov theory.Experiments are conducted on a TC test bench with the AFISMC under different operating conditions.The experimental results demonstrate that the proposed AFISMC feeding pressure controller for CFS gives a superior and robust pressure tracking performance with maximum pressure tracking error within ?0.3 MPa.展开更多
The adaptive fuzzy control is applied in the attitude stabilization of flexible satellite. The detailed design procedure of the adaptive fuzzy control system is presented. Two T-S models are used as both controller an...The adaptive fuzzy control is applied in the attitude stabilization of flexible satellite. The detailed design procedure of the adaptive fuzzy control system is presented. Two T-S models are used as both controller and identifier. The parameters of the controller could be modified according to the information of the identifier. Simulation results show that the method can effectively cope with the uncertainty of flexible satellite by on-line learning and thus posses the good robustness. With the proposed method, the precise attitude control is accomplished.展开更多
The adaptive fuzzy control is combined with input-output linearization control to constitute the hybrid controller. The control method is then applied to the attitude maneuver control of the flexible satellite. The ba...The adaptive fuzzy control is combined with input-output linearization control to constitute the hybrid controller. The control method is then applied to the attitude maneuver control of the flexible satellite. The basic control structure is given. The rules of the controller parameter selection, which guarantee the attitude stabilization of the satellite with parameter uncertainties, have been analyzed. Simulation results show that the precise attitude control is accomplished in spite of the uncertainty in the system.展开更多
基金supported by the Science and Technology Development Fund.
文摘Loss of coolant accident(LOCA),loss of fluid accident(LOFA),and loss of vacuum accident(LOVA)are the most severe accidents that can occur in nuclear power reactors(NPRs).These accidents occur when the reactor loses its cooling media,leading to uncontrolled chain reactions akin to a nuclear bomb.This article is focused on exploring methods to prevent such accidents and ensure that the reactor cooling system remains fully controlled.The reactor coolant pump(RCP)has a pivotal role in facilitating heat exchange between the primary cycle,which is connected to the reactor core,and the secondary cycle associated with the steam generator.Furthermore,the RCP is integral to preventing catastrophic events such as LOCA,LOFA,and LOVA accidents.In this study,we discuss the most critical aspects related to the RCP,specifically focusing on RCP control and RCP fault diagnosis.The AI-based adaptive fuzzy method is used to regulate the RCP’s speed and torque,whereas the neural fault diagnosis system(NFDS)is implemented for alarm signaling and fault diagnosis in nuclear reactors.To address the limitations of linguistic and statistical intelligence approaches,an integration of the statistical approach with fuzzy logic has been proposed.This integrated system leverages the strengths of both methods.Adaptive fuzzy control was applied to the VVER 1200 NPR-RCP induction motor,and the NFDS was implemented on the Kori-2 NPR-RCP.
文摘To control the robot and track the designed trajectory with uncertain disturbances in a specified precision range, an adaptive fuzzy control scheme for the robot arm manipulator is discussed. The controller output error method (COEM) is used to design the adaptive fuzzy controller. A few or all of the parameters of the controller are adjusted by using the gradient descent algorithm to minimize the output error. COEM is adopted in the adaptive control system for the robot arm manipulator with 5-DOF. Simulation results show the effectiveness of the method and the real time adjustment of the parameters.
基金supported in part by the National Natural Science Foundation of China (61773051,61773072,61761166011)the Fundamental Research Fund for the Central Universities (2016RC021,2017JBZ003)
文摘In this paper, we propose an adaptive fuzzy dynamic surface control(DSC) scheme for single-link flexible-joint robotic systems with input saturation. A smooth function is utilized with the mean-value theorem to deal with the difficulties associated with input saturation. An adaptive DSC design with an auxiliary first-order filter is used to solve the "explosion of complexity"problem. It is proved that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded, and the tracking error eventually converges to a small neighborhood around zero. The main advantage of the proposed method is that only one adaptation parameter needs to be updated,which reduces the computational burden significantly. Simulation results demonstrate the feasibility of the proposed scheme and the comparison results show that the improved DSC method can reduce the computational burden by almost two thirds in comparison with the standard DSC method.
文摘For electro-discharge machining, only in the optimum state could the highest material removal rate be realized. In practical machining process, the timely elevation of the tool electrode is needed to eliminate chipping, which ordinarily occupies quite a lot of time. Therefore, besides the control of the machining parameters, the control of the optimum discharge gap and the conversion of different machining states is also needed. In this paper, the adaptive fuzzy control system of servomechanism for EDM combined with ultrasonic vibration is studied, the servomechanism of which is composed of the stepping motor comprising variable steps and the inductive synchronizer. The fuzzy control technology is used to realize the control of the frequency and the step of the servomechanism. The adaptive fuzzy controller has three inputs and two outputs, which can well meet the actual control requirements. The constitution of the fuzzy control regulation for the step frequency is the key to the design of the whole fuzzy control system of the servomechanism. The step frequency is mainly determined by the position error and the change rate of the position error. When the value of the position error is high or medium, the controlled parameters are selected to eliminate the error; when the position error is lower, the controlled parameters are selected to avoid the over-orientation and thus keep the stability of the system. According to these, a fuzzy control table is established in advanced, which is used to express the relations between the fuzzy input parameters and the fuzzy output parameters. The input parameters and the output parameters are all expressed by the level-values in fuzzy field. Therefore, the output parameters used for control can be obtained for the fuzzy control table according to the detected actual input parameters, by which the EDM combined with ultrasonic vibration is improved and the machining efficiency is increased. In addition, a stimulation program is designed by means of Microsoft Visual Basic
文摘This paper proposes a new adaptive post-filtering algorithm to remove coding artifacts in block-based video coder. The proposed method concentrates on blocking and ringing artifacts removal. For de-blocking, the blocking strength is identified to determine the filtering range, and the maximum quantization parameter of the image is used to adapt the 1D fuzzy filter. For de-ringing, besides the edge detection, a complementary ringing detection method is proposed to locate the neglected ringing blocks, and the gradient threshold is adopted to adjust the parameter of 2D fuzzy filter. Experiments are performed on the MPEG-4 sequences. Compared with other methods, the proposed one achieves better detail preservation and artifacts removal performance with lower computational cost.
基金supported by Plan of Excellent Leaders in Their Science in Shanghai, China (No.06XD14201).
文摘According to a type of normal nonlinear system, an indirect adaptive fuzzy (IAF) controller has been applied to those systems where no accurate mathematical models of the systems under control are available. To satisfy with system performance, an indirect accelerated adaptive fuzzy (IAAF) controller is proposed, and its general form is presented. The general form IAAF controller ensures necessary control criteria and system's global stability using Lyapunov Theorem. It has been proved that the close-loop system error converges to a small neighborhood of equilibrium point. The optimal IAAF controller is derived to guarantee the process's shortest settling time. Simulation results indicate the IAAF controller make the system more stable, accurate, and fast.
基金This project was supported by the National Natural Science Foundation of China (90405011).
文摘A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a high-gain observer is used to estimate the derivatives of the system output. The closed-loop system is proven to be semiglobally uniformly ultimately bounded. In addition, it is shown that if the approximation accuracy of the fuzzy logic system is high enough and the observer gain is chosen sufficiently large, an arbitrarily small tracking error can be achieved. Simulation results verify the effectiveness of the newly designed scheme and the theoretical discussion.
文摘On the simple continuously variable transmission (CVT) driveline model, the design of adaptive fuzzy control system for CVT vehicle is presented. The adaptive fuzzy control system consists of a scaling factor self-tuning fuzzy-PI throttle controller, and a hybrid fuzzy-PID CVT ratio and brake controller. The presented adaptive fuzzy control strategy is vehicle model independent, which depends only on the instantaneous vehicle states, but does not depend on vehicle parameters. So it has good robustness against uncertain vehicle parameters and exogenous load disturbance. Simulation results show that the proposed adaptive fuzzy strategy has good adaptability and practicality value.
基金supported by National Natural Science Foundation of China (No. 61074014)the Outstanding Youth Funds of Liaoning Province (No. 2005219001)Educational Department of Liaoning Province (No. 2006R29, No. 2007T80)
文摘In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and singleoutput (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unknown high-frequency gain sign, and without the measurements of the states. In the backstepping recursive design, fuzzy logic systems are employed to approximate the unknown smooth nonlinear functions, K-filters is designed to estimate the unmeasured states, and Nussbaum gain functions are introduced to solve the problem of unknown sign of high-frequency gain. By combining adaptive fuzzy control theory and adaptive backstepping design, a stable adaptive fuzzy output feedback control scheme is developed. It has been proven that the proposed adaptive fuzzy robust control approach can guarantee that all the signals of the closed-loop system are uniformly ultimately bounded and the tracking error can converge to a small neighborhood of the origin by appropriately choosing design parameters. Simulation results have shown the effectiveness of the proposed method.
文摘The operating temperature of a solid oxide fuel cell (SOFC) stack is a very important parameter to be controlled, which impacts the performance of the SOFC due to thermal cycling. In this paper, an adaptive fuzzy control method based on an affine nonlinear temperature model is developed to control the temperature of the SOFC within a specified range. Fuzzy logic systems are used to approximate nonlinear functions in the SOFC system and an adaptive technique is employed to construct the controller. Compared with the traditional fuzzy and proportion-integral-derivative (PID) control, the simulation results show that the designed adaptive fuzzy control method performed much better. So it is feasible to build an adaptive fuzzy controller for temperature control of the SOFC.
基金Project supported by the Young Talents Natural Science Foundation for Universities of Anhui Province,China(Grant No.2012SQRL179)
文摘This paper presents a robust output feedback control method for uncertain chaotic systems, which comprises a nonlinear inversion-based controller with a fuzzy robust compensator. The proposed controller eliminates the unknown nonlinear function by using a fuzzy system, whose inputs are not the state variables but feedback error signals. The underlying stability analysis as well as parameter update law design are carried out by using the Lyapunov-based technique. The proposed method indicates that the nonlinear inversion-based control approach can also be applied to uncertain chaotic systems. Theoretical results are illustrated through two simulation examples.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11401243 and 61403157)the Foundation for Distinguished Young Talents in Higher Education of Anhui Province,China(Grant No.GXYQZD2016257)+3 种基金the Fundamental Research Funds for the Central Universities of China(Grant No.GK201504002)the Natural Science Foundation for the Higher Education Institutions of Anhui Province of China(Grant Nos.KJ2015A256 and KJ2016A665)the Natural Science Foundation of Anhui Province,China(Grant No.1508085QA16)the Innovation Funds of Graduate Programs of Shaanxi Normal University,China(Grant No.2015CXB008)
文摘In this paper, synchronization for a class of uncertain fractional-order neural networks with external disturbances is discussed by means of adaptive fuzzy control. Fuzzy logic systems, whose inputs are chosen as synchronization errors, are employed to approximate the unknown nonlinear functions. Based on the fractional Lyapunov stability criterion, an adaptive fuzzy synchronization controller is designed, and the stability of the closed-loop system, the convergence of the synchronization error, as well as the boundedness of all signals involved can be guaranteed. To update the fuzzy parameters, fractional-order adaptations laws are proposed. Just like the stability analysis in integer-order systems, a quadratic Lyapunov function is used in this paper. Finally, simulation examples are given to show the effectiveness of the proposed method.
基金surported by Tianjin Science and Technology Development for Higher Education(20051206).
文摘An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membership functions in fuzzy logic systems are adjusted according to adaptive laws for the purpose of controlling the plant to track a reference trajectory. It is proved that the scheme can not only guarantee the boundedness of the input and output of the closed-loop system, but also make the tracking error converge to a small neighborhood of the origin. Simulation results indicate the effectiveness of this scheme.
基金This work was supported by the National Natural Science Foundation of China (No. 60474025, 90405017).
文摘A novel fuzzy terminal sliding mode control (FTSMC) scheme is proposed for position tracking of a class of second-order nonlinear uncertain system. In the proposed scheme, we integrate input-output linearization technique to cancel the nonlinearities. By using a function-augmented sliding hyperplane, it is guaranteed that the output tracking error converges to zero in finite time which can be set arbitrarily. The proposed scheme eliminates reaching phase problem, so that the closed-loop system always shows invariance property to parameter uncertainties. Fuzzy logic systems are used to approximate the unknown system functions and switch item. Robust adaptive law is proposed to reduce approximation errors between true nonlinear functions and fuzzy systems, thus chattering phenomenon can be eliminated. Stability of the proposed control scheme is proved and the scheme is applied to an inverted pendulum system. Simulation studies are provided to confirm performance and effectiveness of the proposed control approach.
基金Supported by the National Natural Science Foundation of China(No.61663030,61663032)Natural Science Foundation of Jiangxi Province(No.20142BAB207021)+4 种基金the Foundation of Jiangxi Educational Committee(No.GJJ150753)the Innovation Fund Designated for Graduate Students of Nanchang Hangkong University(No.YC2017027)the Open Fund of Key Laboratory of Image Processing and Pattern Recognition of Jiangxi Province(Nanchang Hangkong University)(No.TX201404003)Key Laboratory of Nondestructive Testing(Nanchang Hangkong University),Ministry of Education(No.ZD29529005)the Reform Project of Degree and Postgraduate Education in Jiangxi(No.JXYJG-2017-131)
文摘In order to suppress the influence of uncertain factors on robot system and enable an uncertain robot system to track the reference input accurately,a strategy of combining composite nonlinear feedback(CNF)control and adaptive fuzzy control is studied,and a robot CNF controller based on adaptive fuzzy compensation is proposed.The key of this strategy is to use adaptive fuzzy control to approach the uncertainty of the system online,as the compensation term of the CNF controller,and make full use of the advantages of the two control methods to reduce the influence of uncertain factors on the performance of the system.The convergence of the closed-loop system is proved by feedback linearization and Lyapunov theory.The final simulation results confirm the effectiveness of this plan.
基金the project of science and technology of Henan province under Grant No.14210221036.
文摘Multi-joint manipulator systems are subject to nonlinear influences such as frictional characteristics,random disturbances and load variations.To account for uncertain disturbances in the operation of manipulators,we propose an adaptive manipulator control method based on a multi-joint fuzzy system,in which the upper bound information of the fuzzy system is constant and the state variables of the manipulator control system are measurable.The control algorithm of the system is a MIMO(multi-input-multi-output)fuzzy system that can approximate system error by using a robust adaptive control law to eliminate the shadow caused by approximation error.It can ensure the stability of complex manipulator control systems and reduce the number of fuzzy rules required.Comparison of experimental and simulation data shows that the controller designed using this algorithm has highly-precise trajectory-tracking control and can control robotic systems with complex characteristics of non-linearity,coupling and uncertainty.Therefore,the proposed algorithm has good practical application prospects and promotes the development of complex control systems.
基金Project supported by the Iranian Telecommunication Research Center
文摘We propose a novel approach called adaptive fuzzy ant-based routing (AFAR), where a group of intelligent agents (or ants) builds paths between a pair of nodes, exploring the network concurrently and exchanging obtained information to up-date the routing tables. Routing decisions can be made by the fuzzy logic technique based on local information about the current network state and the knowledge constructed by a previous set of behaviors of other agents. The fuzzy logic technique allows multiple constraints such as path delay and path utilization to be considered in a simple and intuitive way. Simulation tests show that AFAR outperforms OSPF, AntNet and ASR, three of the currently most important state-of-the-art algorithms, in terms of end-to-end delay, packet delivery, and packet drop ratio. AFAR is a promising alternative for routing of data in next generation networks.
基金Project(2012AA041801)supported by the High-tech Research and Development Program of China
文摘A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of CFS is subjected to unknown load characteristics of rock or soil; in addition,the geological condition is time-varying.Due to the complex load characteristics of rock or soil,the feeding velocity of TC is related to geological conditions.What is worse,its dynamic model is subjected to uncertainties and its function is unknown.To deal with the particular characteristics of CFS,a novel adaptive fuzzy integral sliding mode control(AFISMC) was designed for feeding pressure control of CFS,which combines the robust characteristics of an integral sliding mode controller and the adaptive adjusting characteristics of an adaptive fuzzy controller.The AFISMC feeding pressure controller is synthesized using the backstepping technique.The stability of the overall closed-loop system consisting of the adaptive fuzzy inference system,integral sliding mode controller and the cutter feeding system is proved using Lyapunov theory.Experiments are conducted on a TC test bench with the AFISMC under different operating conditions.The experimental results demonstrate that the proposed AFISMC feeding pressure controller for CFS gives a superior and robust pressure tracking performance with maximum pressure tracking error within ?0.3 MPa.
文摘The adaptive fuzzy control is applied in the attitude stabilization of flexible satellite. The detailed design procedure of the adaptive fuzzy control system is presented. Two T-S models are used as both controller and identifier. The parameters of the controller could be modified according to the information of the identifier. Simulation results show that the method can effectively cope with the uncertainty of flexible satellite by on-line learning and thus posses the good robustness. With the proposed method, the precise attitude control is accomplished.
文摘The adaptive fuzzy control is combined with input-output linearization control to constitute the hybrid controller. The control method is then applied to the attitude maneuver control of the flexible satellite. The basic control structure is given. The rules of the controller parameter selection, which guarantee the attitude stabilization of the satellite with parameter uncertainties, have been analyzed. Simulation results show that the precise attitude control is accomplished in spite of the uncertainty in the system.