The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base...The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances.展开更多
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ...This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.展开更多
Accurate traffic pattern prediction in largescale networks is of great importance for intelligent system management and automatic resource allocation.System-level mobile traffic forecasting has significant challenges ...Accurate traffic pattern prediction in largescale networks is of great importance for intelligent system management and automatic resource allocation.System-level mobile traffic forecasting has significant challenges due to the tremendous temporal and spatial dynamics introduced by diverse Internet user behaviors and frequent traffic migration.Spatialtemporal graph modeling is an efficient approach for analyzing the spatial relations and temporal trends of mobile traffic in a large system.Previous research may not reflect the optimal dependency by ignoring inter-base station dependency or pre-determining the explicit geological distance as the interrelationship of base stations.To overcome the limitations of graph structure,this study proposes an adaptive graph convolutional network(AGCN)that captures the latent spatial dependency by developing self-adaptive dependency matrices and acquires temporal dependency using recurrent neural networks.Evaluated on two mobile network datasets,the experimental results demonstrate that this method outperforms other baselines and reduces the mean absolute error by 3.7%and 5.6%compared to time-series based approaches.展开更多
The millimeter wave(mm Wave)is a potential solution for high data rate communication due to its availability of large bandwidth.However,it is challenging to perform beam tracking in vehicular mm Wave communication sys...The millimeter wave(mm Wave)is a potential solution for high data rate communication due to its availability of large bandwidth.However,it is challenging to perform beam tracking in vehicular mm Wave communication systems due to high mobility and narrow beams.In this paper,an adaptive beam tracking algorithm is proposed to improve the network throughput performance while reducing the training signal overhead.In particular,based on the mobility prediction at base station(BS),a novel frame structure with dynamic bundled timeslot is designed.Moreover,an actor-critic reinforcement learning based algorithm is proposed to obtain the joint optimization of both beam width and the number of bundled timeslots,which makes the beam tracking adapt to the changing environment.Simulation results demonstrate that,compared with the traditional full scan and Kalman filter based beam tracking algorithms,our proposed algorithm can improve the time-averaged throughput by 11.34%and 24.86%respectively.With the newly designed frame structure,it also outperforms beam tracking with conventional frame structure,especially in scenarios with large range of vehicle speeds.展开更多
In today's Internet routing infrastructure,designers have addressed scal-ing concerns in routing constrained multiobjective optimization problems examining latency and mobility concerns as a secondary constrain.In...In today's Internet routing infrastructure,designers have addressed scal-ing concerns in routing constrained multiobjective optimization problems examining latency and mobility concerns as a secondary constrain.In tactical Mobile Ad-hoc Network(MANET),hubs can function based on the work plan in various social affairs and the internally connected hubs are almost having the related moving standards where the topology between one and the other are tightly coupled in steady support by considering the touchstone of hubs such as a self-sorted out,self-mending and self-administration.Clustering in the routing process is one of the key aspects to increase MANET performance by coordinat-ing the pathways using multiple criteria and analytics.We present a Group Adaptive Hybrid Routing Algorithm(GAHRA)for gathering portability,which pursues table-driven directing methodology in stable accumulations and on-request steering strategy for versatile situations.Based on this aspect,the research demonstrates an adjustable framework for commuting between the table-driven approach and the on-request approach,with the objectives of enhancing the out-put of MANET routing computation in each hub.Simulation analysis and replication results reveal that the proposed method is promising than a single well-known existing routing approach and is well-suited for sensitive MANET applications.展开更多
When the mobile robot performs certain motion tasks in complex environment, wheel slipping inevitably occurs due to the wet or icy road and other reasons, thus directly influences the motion control accuracy. To addre...When the mobile robot performs certain motion tasks in complex environment, wheel slipping inevitably occurs due to the wet or icy road and other reasons, thus directly influences the motion control accuracy. To address unknown wheel longitudinal slipping problem for mobile robot, a RBF neural network approach based on whole model approximation is presented. The real-time data acquisition of inertial measure unit(IMU), encoders and other sensors is employed to get the mobile robot’s position and orientation in the movement, which is applied to compensate the unknown bounds of the longitudinal slipping using the adaptive technique. Both the simulation and experimental results prove that the control scheme possesses good practical performance and realize the motion control with unknown longitudinal slipping.展开更多
As one of the core issues of the mobile robot motion control, trajectory tracking has received extensive attention. At present, the solution of the problem only takes kinematic or dynamic model into account separately...As one of the core issues of the mobile robot motion control, trajectory tracking has received extensive attention. At present, the solution of the problem only takes kinematic or dynamic model into account separately, so that the presented strategy is difficult to realize satisfactory tracking quality in practical application. Considering the unknown parameters of two models, this paper presents an adaptive controller for solving the trajectory tracking problem of a mobile robot. Firstly, an adaptive kinematic controller utilized to generate the command of velocity is designed based on Backstepping method. Then, in order to make the real velocity of mobile robot reach the desired velocity asymptotically, a dynamic adaptive controller is proposed adopting reference model and Lyapunov stability theory. Finally, through simulating typical trajectories including circular trajectory, fold line and parabola trajectory in normal and perturbed cases, the results illustrate that the control scheme can solve the tracking problem effectively. The proposed control law, which can tune the kinematic and dynamic model parameters online and overcome external disturbances, provides a novel method for improving trajectory tracking performance of the mobile robot.展开更多
A robust adaptive controller for a nonholonomic mobile robot with unknown kinematic and dynamic parameters is proposed. A kinematic controller whose output is the input of the relevant dynamic controller is provided b...A robust adaptive controller for a nonholonomic mobile robot with unknown kinematic and dynamic parameters is proposed. A kinematic controller whose output is the input of the relevant dynamic controller is provided by using the concept of backstepping. An adaptive algorithm is developed in the kinematic controller to approximate the unknown kinematic parameters, and a simple single-layer neural network is used to express the highly nonlinear robot dynamics in terms of the known and unknown parameters. In order to attenuate the effects of the uncertainties and disturbances on tracking performance, a sliding mode control term is added to the dynamic controller. In the deterministic design of feedback controllers for the uncertain dynamic systems, upper bounds on the norm of the uncertainties are an important clue to guarantee the stability of the closed-loop system. However, sometimes these upper bounds may not be easily obtained because of the complexity of the structure of the uncertainties. Thereby, simple adaptation laws are proposed to approximate upper bounds on the norm of the uncertainties to address this problem. The stability of the proposed control system is shown through the Lyapunov method. Lastly, a design example for a mobile robot with two actuated wheels is provided and the feasibility of the controller is demonstrated by numerical simulations.展开更多
With the new promising technique of mobile edge computing (MEC) emerging, by utilizing the edge computing and cloud computing capabilities to realize the HTTP adaptive video streaming transmission in MEC-based 5G netw...With the new promising technique of mobile edge computing (MEC) emerging, by utilizing the edge computing and cloud computing capabilities to realize the HTTP adaptive video streaming transmission in MEC-based 5G networks has been widely studied. Although many works have been done, most of the existing works focus on the issues of network resource utilization or the quality of experience (QoE) promotion, while the energy efficiency is largely ignored. In this paper, different from previous works, in order to realize the energy efficiency for video transmission in MEC-enhanced 5G networks, we propose a joint caching and transcoding schedule strategy for HTTP adaptive video streaming transmission by taking the caching and transcoding into consideration. We formulate the problem of energy-efficient joint caching and transcoding as an integer programming problem to minimize the system energy consumption. Due to solving the optimization problem brings huge computation complexity, therefore, to make the optimization problem tractable, a heuristic algorithm based on simulated annealing algorithm is proposed to iteratively reach the global optimum solution with a lower complexity and higher accuracy. Finally, numerical simulation results are illustrated to demonstrated that our proposed scheme brings an excellent performance.展开更多
Vision-based pose stabilization of nonholonomic mobile robots has received extensive attention. At present, most of the solutions of the problem do not take the robot dynamics into account in the controller design, so...Vision-based pose stabilization of nonholonomic mobile robots has received extensive attention. At present, most of the solutions of the problem do not take the robot dynamics into account in the controller design, so that these controllers are difficult to realize satisfactory control in practical application. Besides, many of the approaches suffer from the initial speed and torque jump which are not practical in the real world. Considering the kinematics and dynamics, a two-stage visual controller for solving the stabilization problem of a mobile robot is presented, applying the integration of adaptive control, sliding-mode control, and neural dynamics. In the first stage, an adaptive kinematic stabilization controller utilized to generate the command of velocity is developed based on Lyapunov theory. In the second stage, adopting the sliding-mode control approach, a dynamic controller with a variable speed function used to reduce the chattering is designed, which is utilized to generate the command of torque to make the actual velocity of the mobile robot asymptotically reach the desired velocity. Furthermore, to handle the speed and torque jump problems, the neural dynamics model is integrated into the above mentioned controllers. The stability of the proposed control system is analyzed by using Lyapunov theory. Finally, the simulation of the control law is implemented in perturbed case, and the results show that the control scheme can solve the stabilization problem effectively. The proposed control law can solve the speed and torque jump problems, overcome external disturbances, and provide a new solution for the vision-based stabilization of the mobile robot.展开更多
This paper addresses the trajectory tracking control of a nonholonomic wheeled mobile manipulator with parameter uncertainties and disturbances. The proposed algorithm adopts a robust adaptive control strategy where p...This paper addresses the trajectory tracking control of a nonholonomic wheeled mobile manipulator with parameter uncertainties and disturbances. The proposed algorithm adopts a robust adaptive control strategy where parametric uncertainties are compensated by adaptive update techniques and the disturbances are suppressed. A kinematic controller is first designed to make the robot follow a desired end-effector and platform trajectories in task space coordinates simultaneously. Then, an adaptive control scheme is proposed, which ensures that the trajectories are accurately tracked even in the presence of external disturbances and uncertainties. The system stability and the convergence of tracking errors to zero are rigorously proven using Lyapunov theory. Simulations results are given to illustrate the effectiveness of the proposed robust adaptive control law in comparison with a sliding mode controller.展开更多
In the multi-robots system, it's important for a robot to acquire adaptivenavigation rules for reaching the goal and avoiding other robots and obstacles and in the real-timeenvironment. An efficient approach to co...In the multi-robots system, it's important for a robot to acquire adaptivenavigation rules for reaching the goal and avoiding other robots and obstacles and in the real-timeenvironment. An efficient approach to collision-avoidance in multi-robots system is suggested . Itis based on velocity information of moving objects and the distances between the robots and theobstacles in three specified directions and makes the robot navigate adaptively without collisionwith each other in a complicated situation. The effectiveness of algorithm is proved by the severalsimple examples in the physical world.展开更多
An adaptive particle filter for fault diagnosis of dead-reckoning system was presented,which applied a general framework to integrate rule-based domain knowledge into particle filter.Domain knowledge was exploited to ...An adaptive particle filter for fault diagnosis of dead-reckoning system was presented,which applied a general framework to integrate rule-based domain knowledge into particle filter.Domain knowledge was exploited to constrain the state space to certain subset.The state space was adjusted by setting the transition matrix.Firstly,the monitored mobile robot and its kinematics models,measurement models and fault models were given.Then,5 kinds of planar movement states of the robot were estimated with driving speeds of left and right side.After that,the possible(or detectable)fault modes were obtained to modify the transitional probability.There are two typical advantages of this method,i.e.particles will never be drawn from hopeless area of the state space,and the particle number is reduced.展开更多
Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobil...Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobile target positioning. Taking traditional Kalman filter(KF) as the framework, the system equation of KF was established by the INS and the observation equation of position errors was built by the WSN. Meanwhile, the observation equation of velocity errors was established by the velocity difference between the INS and WSN, then the covariance matrix of Kalman filter measurement noise was adjusted with fuzzy inference system(FIS), and the fuzzy adaptive Kalman filter(FAKF) based on the INS/WSN was proposed. The simulation results show that the FAKF method has better accuracy and robustness than KF and EKF methods and shows good adaptive capacity with time-varying system noise. Finally, experimental results further prove that FAKF has the fast convergence error, in comparison with KF and EKF methods.展开更多
Mobile WiMAX is a wireless networking system based on the IEEE 802.16e standard. In order to support mobile, some kinds of handover schemes must be adopted, and the hard handover is defined as mandatory. Since the dat...Mobile WiMAX is a wireless networking system based on the IEEE 802.16e standard. In order to support mobile, some kinds of handover schemes must be adopted, and the hard handover is defined as mandatory. Since the data transmission should be paused during the hard handover process, it causes handover delay in mobile communication. The handover delay makes severe degradation in system performance when implemented in real-time applications such as IPTV and VoIP. The existing draft standard considers only the received signal strength when deciding handover initiation. However, the velocity factor also has an important influence on handover initiation and can not be neglected. To deal with these problems, this article proposes a velocity-adaptive handover scheme. This scheme adopts dynamic handover threshold according to different velocity to skip some unnecessary handover stages, reduces handover delay and enhances the network resource utilization. The simulation result and performance analysis validate the efficiency of the proposed scheme.展开更多
The tracking and stable control of a typical shipmounted mobile satellite communication system(MSCS) is studied.Unlike the former studies based on simplified single-axis models,a tri-axis nonlinear model including t...The tracking and stable control of a typical shipmounted mobile satellite communication system(MSCS) is studied.Unlike the former studies based on simplified single-axis models,a tri-axis nonlinear model including the kinematic and dynamic features of the MSCS is used as the control object.An adaptive robust controller with trajectory planning is designed to deal with large parametric uncertainties and uncertain nonlinearities of the system.A theoretic performance result is given and proved.The designed adaptive robust controller and other two traditional controllers are tested in the comparative simulations under three different situations.The simulation results show the tracking and stable validity of the proposed controller.展开更多
The aim of this research paper is to improve the performance of Fast Transversal Filter (FTF) adaptive algorithm used for mobile channel estimation. A multi-ray Jakes mobile channel model with a Doppler frequency shif...The aim of this research paper is to improve the performance of Fast Transversal Filter (FTF) adaptive algorithm used for mobile channel estimation. A multi-ray Jakes mobile channel model with a Doppler frequency shift is used in the simulation. The channel estimator obtains the sampled channel impulse response (SIR) from the predetermined training sequence. The FTF is a computationally efficient implementation of the recursive least squares (RLS) algorithm of the conventional Kalman filter. A stabilization FTF is used to overcome the problem caused by the accumulation of roundoff errors, and, in addition, degree-one prediction is incorporated into the algorithm (Predictive FTF) to improve the estimation performance and to track changes of the mobile channel. The efficiency of the algorithm is confirmed by simulation results for slow and fast varying mobile channel. The results show about 5 to 15 dB improvement in the Mean Square Error (Deviation) between the estimated taps and the actual ones depending on the speed of channel time variations. Slow and fast vehicular channels with Doppler frequencies 100 Hz and 222 Hz respectively are used in these tests. The predictive FTF (PFTF) algorithm give a better channel SIR estimation performance than the conventional FTF algorithm, and it involves only a small increase in complexity.展开更多
Multipath signal processing is a promising technique for increasing the capacity of downlink frequency of satellite communication networks (S-PCN). The paper presents an approach to processing and reducing multipath s...Multipath signal processing is a promising technique for increasing the capacity of downlink frequency of satellite communication networks (S-PCN). The paper presents an approach to processing and reducing multipath signals received from S-PCN typified of mobile terminal users in clustered or mountainous environment. Use of hybrid linear adaptive antenna array technique and adaptive filtering technique provides improved performance by eliminating uncorrelated signal residing in antenna sidelobes.展开更多
Given that satellite mobile channel is a time-varying channel,Adaptive Modulation and Coding(AMC) was proposed to provide robust and spectrally efficient transmission over satellite mobile channel.Three different kind...Given that satellite mobile channel is a time-varying channel,Adaptive Modulation and Coding(AMC) was proposed to provide robust and spectrally efficient transmission over satellite mobile channel.Three different kinds of channel environment were considered in this paper:the urban area,the rural area,and the open space.Four combinations of modulation and coding were designed to meet reliable communication on time-varying channel,and spectral efficiency and system throughput of these three kinds of channel environment were simulated.Based on the simulation results,this paper analysed the results and compared the performances of AMC with non-AMC system in these three kinds of channel environment.At last,we come to the conclusions:a system with AMC can achieve higher spectral efficiency and better system throughput;and the spectral efficiency and system throughput of AMC system will be higher on better satellite mobile channel.展开更多
基金the China Scholarship Council(202106690037)the Natural Science Foundation of Anhui Province(19080885QE194)。
文摘The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances.
基金the National Natural Science Foundation of China under Grant U22A2043.
文摘This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.
基金supported by the National Natural Science Foundation of China(61975020,62171053)。
文摘Accurate traffic pattern prediction in largescale networks is of great importance for intelligent system management and automatic resource allocation.System-level mobile traffic forecasting has significant challenges due to the tremendous temporal and spatial dynamics introduced by diverse Internet user behaviors and frequent traffic migration.Spatialtemporal graph modeling is an efficient approach for analyzing the spatial relations and temporal trends of mobile traffic in a large system.Previous research may not reflect the optimal dependency by ignoring inter-base station dependency or pre-determining the explicit geological distance as the interrelationship of base stations.To overcome the limitations of graph structure,this study proposes an adaptive graph convolutional network(AGCN)that captures the latent spatial dependency by developing self-adaptive dependency matrices and acquires temporal dependency using recurrent neural networks.Evaluated on two mobile network datasets,the experimental results demonstrate that this method outperforms other baselines and reduces the mean absolute error by 3.7%and 5.6%compared to time-series based approaches.
基金supported by the National Key R&D Program of China(2020YFB1807204)Beijing Natural Science Foundation(L212003)。
文摘The millimeter wave(mm Wave)is a potential solution for high data rate communication due to its availability of large bandwidth.However,it is challenging to perform beam tracking in vehicular mm Wave communication systems due to high mobility and narrow beams.In this paper,an adaptive beam tracking algorithm is proposed to improve the network throughput performance while reducing the training signal overhead.In particular,based on the mobility prediction at base station(BS),a novel frame structure with dynamic bundled timeslot is designed.Moreover,an actor-critic reinforcement learning based algorithm is proposed to obtain the joint optimization of both beam width and the number of bundled timeslots,which makes the beam tracking adapt to the changing environment.Simulation results demonstrate that,compared with the traditional full scan and Kalman filter based beam tracking algorithms,our proposed algorithm can improve the time-averaged throughput by 11.34%and 24.86%respectively.With the newly designed frame structure,it also outperforms beam tracking with conventional frame structure,especially in scenarios with large range of vehicle speeds.
文摘In today's Internet routing infrastructure,designers have addressed scal-ing concerns in routing constrained multiobjective optimization problems examining latency and mobility concerns as a secondary constrain.In tactical Mobile Ad-hoc Network(MANET),hubs can function based on the work plan in various social affairs and the internally connected hubs are almost having the related moving standards where the topology between one and the other are tightly coupled in steady support by considering the touchstone of hubs such as a self-sorted out,self-mending and self-administration.Clustering in the routing process is one of the key aspects to increase MANET performance by coordinat-ing the pathways using multiple criteria and analytics.We present a Group Adaptive Hybrid Routing Algorithm(GAHRA)for gathering portability,which pursues table-driven directing methodology in stable accumulations and on-request steering strategy for versatile situations.Based on this aspect,the research demonstrates an adjustable framework for commuting between the table-driven approach and the on-request approach,with the objectives of enhancing the out-put of MANET routing computation in each hub.Simulation analysis and replication results reveal that the proposed method is promising than a single well-known existing routing approach and is well-suited for sensitive MANET applications.
基金Supported by Scientific and Innovation Research Funds for the Beijing University of Posts and Telecommunications(Grant No.2017RC22)
文摘When the mobile robot performs certain motion tasks in complex environment, wheel slipping inevitably occurs due to the wet or icy road and other reasons, thus directly influences the motion control accuracy. To address unknown wheel longitudinal slipping problem for mobile robot, a RBF neural network approach based on whole model approximation is presented. The real-time data acquisition of inertial measure unit(IMU), encoders and other sensors is employed to get the mobile robot’s position and orientation in the movement, which is applied to compensate the unknown bounds of the longitudinal slipping using the adaptive technique. Both the simulation and experimental results prove that the control scheme possesses good practical performance and realize the motion control with unknown longitudinal slipping.
基金supported by State Key Laboratory of Robotics and System of China (Grant No. SKLR-2010 -MS - 14)State Key Lab of Embedded System and Service Computing of China(Grant No. 2010-11)
文摘As one of the core issues of the mobile robot motion control, trajectory tracking has received extensive attention. At present, the solution of the problem only takes kinematic or dynamic model into account separately, so that the presented strategy is difficult to realize satisfactory tracking quality in practical application. Considering the unknown parameters of two models, this paper presents an adaptive controller for solving the trajectory tracking problem of a mobile robot. Firstly, an adaptive kinematic controller utilized to generate the command of velocity is designed based on Backstepping method. Then, in order to make the real velocity of mobile robot reach the desired velocity asymptotically, a dynamic adaptive controller is proposed adopting reference model and Lyapunov stability theory. Finally, through simulating typical trajectories including circular trajectory, fold line and parabola trajectory in normal and perturbed cases, the results illustrate that the control scheme can solve the tracking problem effectively. The proposed control law, which can tune the kinematic and dynamic model parameters online and overcome external disturbances, provides a novel method for improving trajectory tracking performance of the mobile robot.
基金partly supported by the National Natural Science Foundation of China (No.50625516)the 863 program of China(No.2006AA09Z203,2006AA04A110)
文摘A robust adaptive controller for a nonholonomic mobile robot with unknown kinematic and dynamic parameters is proposed. A kinematic controller whose output is the input of the relevant dynamic controller is provided by using the concept of backstepping. An adaptive algorithm is developed in the kinematic controller to approximate the unknown kinematic parameters, and a simple single-layer neural network is used to express the highly nonlinear robot dynamics in terms of the known and unknown parameters. In order to attenuate the effects of the uncertainties and disturbances on tracking performance, a sliding mode control term is added to the dynamic controller. In the deterministic design of feedback controllers for the uncertain dynamic systems, upper bounds on the norm of the uncertainties are an important clue to guarantee the stability of the closed-loop system. However, sometimes these upper bounds may not be easily obtained because of the complexity of the structure of the uncertainties. Thereby, simple adaptation laws are proposed to approximate upper bounds on the norm of the uncertainties to address this problem. The stability of the proposed control system is shown through the Lyapunov method. Lastly, a design example for a mobile robot with two actuated wheels is provided and the feasibility of the controller is demonstrated by numerical simulations.
基金support by the Major National Science and Technology Projects (No. 2018ZX03001014-003)
文摘With the new promising technique of mobile edge computing (MEC) emerging, by utilizing the edge computing and cloud computing capabilities to realize the HTTP adaptive video streaming transmission in MEC-based 5G networks has been widely studied. Although many works have been done, most of the existing works focus on the issues of network resource utilization or the quality of experience (QoE) promotion, while the energy efficiency is largely ignored. In this paper, different from previous works, in order to realize the energy efficiency for video transmission in MEC-enhanced 5G networks, we propose a joint caching and transcoding schedule strategy for HTTP adaptive video streaming transmission by taking the caching and transcoding into consideration. We formulate the problem of energy-efficient joint caching and transcoding as an integer programming problem to minimize the system energy consumption. Due to solving the optimization problem brings huge computation complexity, therefore, to make the optimization problem tractable, a heuristic algorithm based on simulated annealing algorithm is proposed to iteratively reach the global optimum solution with a lower complexity and higher accuracy. Finally, numerical simulation results are illustrated to demonstrated that our proposed scheme brings an excellent performance.
基金supported by National Key Basic Research and Development Program of China (973 Program,Grant No. 2009CB320602)National Natural Science Foundation of China (Grant Nos. 60834004,61025018)+2 种基金National Science and Technology Major Project of China(Grant No. 2011ZX02504-008)Fundamental Research Funds for the Central Universities of China (Grant No. ZZ1222)Key Laboratory of Advanced Engineering Surveying of NASMG of China (Grant No.TJES1106)
文摘Vision-based pose stabilization of nonholonomic mobile robots has received extensive attention. At present, most of the solutions of the problem do not take the robot dynamics into account in the controller design, so that these controllers are difficult to realize satisfactory control in practical application. Besides, many of the approaches suffer from the initial speed and torque jump which are not practical in the real world. Considering the kinematics and dynamics, a two-stage visual controller for solving the stabilization problem of a mobile robot is presented, applying the integration of adaptive control, sliding-mode control, and neural dynamics. In the first stage, an adaptive kinematic stabilization controller utilized to generate the command of velocity is developed based on Lyapunov theory. In the second stage, adopting the sliding-mode control approach, a dynamic controller with a variable speed function used to reduce the chattering is designed, which is utilized to generate the command of torque to make the actual velocity of the mobile robot asymptotically reach the desired velocity. Furthermore, to handle the speed and torque jump problems, the neural dynamics model is integrated into the above mentioned controllers. The stability of the proposed control system is analyzed by using Lyapunov theory. Finally, the simulation of the control law is implemented in perturbed case, and the results show that the control scheme can solve the stabilization problem effectively. The proposed control law can solve the speed and torque jump problems, overcome external disturbances, and provide a new solution for the vision-based stabilization of the mobile robot.
文摘This paper addresses the trajectory tracking control of a nonholonomic wheeled mobile manipulator with parameter uncertainties and disturbances. The proposed algorithm adopts a robust adaptive control strategy where parametric uncertainties are compensated by adaptive update techniques and the disturbances are suppressed. A kinematic controller is first designed to make the robot follow a desired end-effector and platform trajectories in task space coordinates simultaneously. Then, an adaptive control scheme is proposed, which ensures that the trajectories are accurately tracked even in the presence of external disturbances and uncertainties. The system stability and the convergence of tracking errors to zero are rigorously proven using Lyapunov theory. Simulations results are given to illustrate the effectiveness of the proposed robust adaptive control law in comparison with a sliding mode controller.
文摘In the multi-robots system, it's important for a robot to acquire adaptivenavigation rules for reaching the goal and avoiding other robots and obstacles and in the real-timeenvironment. An efficient approach to collision-avoidance in multi-robots system is suggested . Itis based on velocity information of moving objects and the distances between the robots and theobstacles in three specified directions and makes the robot navigate adaptively without collisionwith each other in a complicated situation. The effectiveness of algorithm is proved by the severalsimple examples in the physical world.
基金Supported by National Natural Science Foundation of China(60874002) Key Project of Shanghai Education Committee (09ZZ158) Leading Academic Discipline Project of Shanghai Municipal Government (S30501)
基金Project(60234030)supported by the National Natural Science Foundation of China
文摘An adaptive particle filter for fault diagnosis of dead-reckoning system was presented,which applied a general framework to integrate rule-based domain knowledge into particle filter.Domain knowledge was exploited to constrain the state space to certain subset.The state space was adjusted by setting the transition matrix.Firstly,the monitored mobile robot and its kinematics models,measurement models and fault models were given.Then,5 kinds of planar movement states of the robot were estimated with driving speeds of left and right side.After that,the possible(or detectable)fault modes were obtained to modify the transitional probability.There are two typical advantages of this method,i.e.particles will never be drawn from hopeless area of the state space,and the particle number is reduced.
基金Project(2013AA06A411)supported by the National High Technology Research and Development Program of ChinaProject(CXZZ14_1374)supported by the Graduate Education Innovation Program of Jiangsu Province,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobile target positioning. Taking traditional Kalman filter(KF) as the framework, the system equation of KF was established by the INS and the observation equation of position errors was built by the WSN. Meanwhile, the observation equation of velocity errors was established by the velocity difference between the INS and WSN, then the covariance matrix of Kalman filter measurement noise was adjusted with fuzzy inference system(FIS), and the fuzzy adaptive Kalman filter(FAKF) based on the INS/WSN was proposed. The simulation results show that the FAKF method has better accuracy and robustness than KF and EKF methods and shows good adaptive capacity with time-varying system noise. Finally, experimental results further prove that FAKF has the fast convergence error, in comparison with KF and EKF methods.
文摘Mobile WiMAX is a wireless networking system based on the IEEE 802.16e standard. In order to support mobile, some kinds of handover schemes must be adopted, and the hard handover is defined as mandatory. Since the data transmission should be paused during the hard handover process, it causes handover delay in mobile communication. The handover delay makes severe degradation in system performance when implemented in real-time applications such as IPTV and VoIP. The existing draft standard considers only the received signal strength when deciding handover initiation. However, the velocity factor also has an important influence on handover initiation and can not be neglected. To deal with these problems, this article proposes a velocity-adaptive handover scheme. This scheme adopts dynamic handover threshold according to different velocity to skip some unnecessary handover stages, reduces handover delay and enhances the network resource utilization. The simulation result and performance analysis validate the efficiency of the proposed scheme.
基金supported by the National Natural Science Foundation of China (61074023,60975075)the Natural Science Foundation of Jiangsu Province of China (BK2008404)+1 种基金the Science and Technology Pillar Program of Jiangsu Province of China (BE2009160)the Innovation Project of Graduate Students of Jiangsu Province of China(CXZZ 0254)
文摘The tracking and stable control of a typical shipmounted mobile satellite communication system(MSCS) is studied.Unlike the former studies based on simplified single-axis models,a tri-axis nonlinear model including the kinematic and dynamic features of the MSCS is used as the control object.An adaptive robust controller with trajectory planning is designed to deal with large parametric uncertainties and uncertain nonlinearities of the system.A theoretic performance result is given and proved.The designed adaptive robust controller and other two traditional controllers are tested in the comparative simulations under three different situations.The simulation results show the tracking and stable validity of the proposed controller.
文摘The aim of this research paper is to improve the performance of Fast Transversal Filter (FTF) adaptive algorithm used for mobile channel estimation. A multi-ray Jakes mobile channel model with a Doppler frequency shift is used in the simulation. The channel estimator obtains the sampled channel impulse response (SIR) from the predetermined training sequence. The FTF is a computationally efficient implementation of the recursive least squares (RLS) algorithm of the conventional Kalman filter. A stabilization FTF is used to overcome the problem caused by the accumulation of roundoff errors, and, in addition, degree-one prediction is incorporated into the algorithm (Predictive FTF) to improve the estimation performance and to track changes of the mobile channel. The efficiency of the algorithm is confirmed by simulation results for slow and fast varying mobile channel. The results show about 5 to 15 dB improvement in the Mean Square Error (Deviation) between the estimated taps and the actual ones depending on the speed of channel time variations. Slow and fast vehicular channels with Doppler frequencies 100 Hz and 222 Hz respectively are used in these tests. The predictive FTF (PFTF) algorithm give a better channel SIR estimation performance than the conventional FTF algorithm, and it involves only a small increase in complexity.
文摘Multipath signal processing is a promising technique for increasing the capacity of downlink frequency of satellite communication networks (S-PCN). The paper presents an approach to processing and reducing multipath signals received from S-PCN typified of mobile terminal users in clustered or mountainous environment. Use of hybrid linear adaptive antenna array technique and adaptive filtering technique provides improved performance by eliminating uncorrelated signal residing in antenna sidelobes.
文摘Given that satellite mobile channel is a time-varying channel,Adaptive Modulation and Coding(AMC) was proposed to provide robust and spectrally efficient transmission over satellite mobile channel.Three different kinds of channel environment were considered in this paper:the urban area,the rural area,and the open space.Four combinations of modulation and coding were designed to meet reliable communication on time-varying channel,and spectral efficiency and system throughput of these three kinds of channel environment were simulated.Based on the simulation results,this paper analysed the results and compared the performances of AMC with non-AMC system in these three kinds of channel environment.At last,we come to the conclusions:a system with AMC can achieve higher spectral efficiency and better system throughput;and the spectral efficiency and system throughput of AMC system will be higher on better satellite mobile channel.