期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Additive friction stir deposition of AZ31B magnesium alloy 被引量:5
1
作者 Sameehan S.Joshi Shreyash M.Patil +5 位作者 Sangram Mazumder Shashank Sharma Daniel A.Riley Shelden Dowden Rajarshi Banerjee Narendra B.Dahotre 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第9期2404-2420,共17页
The current work explored additive friction stir deposition of AZ31B magnesium alloy with the aid of MELD?technology.AZ31B magnesium bar stock was fed through a hollow friction stir tool rotating at constant velocity ... The current work explored additive friction stir deposition of AZ31B magnesium alloy with the aid of MELD?technology.AZ31B magnesium bar stock was fed through a hollow friction stir tool rotating at constant velocity of 400 rpm and translating at linear velocity varied from 4.2 to 6.3 mm/s.A single wall consisting of five layers with each layer of 140×40×1 mm^(3)dimensions was deposited under each processing condition.Microstructure,phase,and crystallographic texture evolutions as a function of additive friction stir deposition parameters were studied with the aid of scanning electron microscopy including electron back scatter diffraction and X-ray diffraction.Both feed material and additively produced samples consisted of theα-Mg phase.The additively produced samples exhibited a refined grain structure compared to the feed material.The feed material appeared to have a weak basal texture,while the additively produced samples experienced a strengthening of this basal texture.The additively produced samples showed a marginally higher hardness compared to the feed material.The current work provided a pathway for solid state additive manufacturing of Mg suitable for structural applications such as automotive components and consumable biomedical implants. 展开更多
关键词 additive friction stir deposition Magnesium alloys additive manufacturing Thermomechanical processing Materials processing Solid state additive manufacturing
下载PDF
Preheating-assisted solid-state friction stir repair of Al-Mg-Si alloy plate at different rotational speeds
2
作者 Hui Wang Yidi Li +3 位作者 Ming Zhang Wei Gong Ruilin Lai Yunping Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期725-736,共12页
Additive friction stir deposition(AFSD)is a novel structural repair and manufacturing technology has become a research hotspot at home and abroad in the past five years.In this work,the microstructural evolution and m... Additive friction stir deposition(AFSD)is a novel structural repair and manufacturing technology has become a research hotspot at home and abroad in the past five years.In this work,the microstructural evolution and mechanical performance of the Al-Mg-Si alloy plate repaired by the preheating-assisted AFSD process were investigated.To evaluate the tool rotation speed and substrate preheating for repair quality,the AFSD technique was used to additively repair 5 mm depth blind holes on 6061 aluminum alloy substrates.The results showed that preheat-assisted AFSD repair significantly improved joint bonding and joint strength compared to the control non-preheat substrate condition.Moreover,increasing rotation speed was also beneficial to improve the metallurgical bonding of the interface and avoid volume defects.Under preheating conditions,the UTS and elongation were positively correlated with rotation speed.Under the process parameters of preheated substrate and tool rotation speed of 1000 r/min,defect-free specimens could be obtained accompanied by tensile fracture occurring in the substrate rather than the repaired zone.The UTS and elongation reached the maximum values of 164.2MPa and 13.4%,which are equivalent to 99.4%and 140%of the heated substrate,respectively. 展开更多
关键词 additive friction stir deposition structural repair tool rotation speed Al alloy
下载PDF
A comparative study of machine learning in predicting the mechanical properties of the deposited AA6061 alloys via additive friction stir deposition
3
作者 Qian Qiao Quan Liu +9 位作者 Jiong Pu Haixia Shi Wenxiao Li Zhixiong Zhu Dawei Guo Hongchang Qian Dawei Zhang Xiaogang Li C.T.Kwok L.M.Tam 《Materials Genome Engineering Advances》 2024年第1期134-147,共14页
Additive friction stir deposition(AFSD)provides strong flexibility and better performance in component design,which is controlled by the process parameters.It is an essential and difficult task to tune those parameter... Additive friction stir deposition(AFSD)provides strong flexibility and better performance in component design,which is controlled by the process parameters.It is an essential and difficult task to tune those parameters.The recent exploration of machine learning(ML)exhibits great potential to obtain a suitable balance between productivity and set parameters.In this study,ML techniques,including support vector machine(SVM),random forest(RF)and artificial neural network(ANN),are applied to predict the mechanical properties of the AFSD-based AA6061 deposition.Expect for the stable parameters(temperature,force and torque)in situ monitored by the self-developed process-aware kit during the AFSD process and the other factors(rotation speed,traverse speed,feed rate and layer thickness)are also set as input variables.The output variables are microhardness and ultimate tensile strength(UTS).Prediction results show that the ANN model performs the best prediction accuracy with the highest R2(0.9998)and the lowest mean absolute error(MAE,0.0050)and root mean square error(RMSE,0.0063).Furthermore,analysis suggests that the feed rate(24.8%/24.1%)and layer thickness(25.6%/26.6%)indicate a higher contribution that affects the mechanical properties. 展开更多
关键词 additive friction stir deposition in-situ monitored machine learning mechanical properties prediction
下载PDF
3D printing of fine-grained aluminum alloys through extrusion-based additive manufacturing:Microstructure and property characterization 被引量:2
4
作者 Fengchao Liu Pingsha Dong +4 位作者 Abdul Sayeed Khan Yuning Zhang Randy Cheng Alan Taub Zongyi Ma 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第8期126-136,共11页
Additive manufacturing(AM)has the potential to transform manufacturing by enabling previously un-thinkable products,digital inventory and delivery,and distributed manufacturing.Here we presented an extrusion-based met... Additive manufacturing(AM)has the potential to transform manufacturing by enabling previously un-thinkable products,digital inventory and delivery,and distributed manufacturing.Here we presented an extrusion-based metal AM method(refer to“SoftTouch”depositionin thefiledpatent)thatis suitablefor making the metal feedstock flowable prior to the deposition through dynamic recrystallization induced grain refinement at elevated temperatures.The flowable metal was extruded out of the printer head like a paste for building dense metal parts with fine equiaxed grains and wrought mechanical properties.Off-the-shelf metal rods were used as feedstock and the printing process was completed in an open-air environment,avoiding pricy powders and costly inert or vacuum conditions.The resulting multi-layer de-posited 6061 aluminum alloys yield strength and ductility comparable to wrought 6061 aluminum alloys after the same T6 heat treatment.The extrusion-based metal AM method can also be advanced as green manufacturing technologies for fabricating novel alloys and composites,adding novel features to existing parts,repairing damaged metal parts,and welding advanced metals for supporting sustainable manufac-turing,in addition to being developed into a cost-effective manufacturing process for the fabrication of dense metal of complex structural forms. 展开更多
关键词 additive friction extrusion deposition Microstructure refinement Solid state additive manufacturing additive friction stir deposition friction stir welding
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部