Nanofluidic channels inspired by electric eels open a new era of efficient harvesting of clean blue osmotic energy from salinity gradients.Limited by less charge and weak ion selectivity of the raw material itself,ene...Nanofluidic channels inspired by electric eels open a new era of efficient harvesting of clean blue osmotic energy from salinity gradients.Limited by less charge and weak ion selectivity of the raw material itself,energy conversion through nanofluidic channels is still facing considerable challenges.Here,a facile and efficient strategy to enhance osmotic energy harvesting based on drastically increasing surface charge density of MXenes subnanochannels via oxygen plasma is proposed.This plasma could break Ti–C bonds in the MXenes subnanochannels and effectively facilitate the formation of more Ti–O,C═O,O–OH,and rutile with a stronger negative charge and work function,which leads the surface potential of MXenes membrane to increase from 205 to 430 mV.This significant rise of surface charge endows the MXenes membrane with high cation selectivity,which could make the output power density of the MXenes membrane increase by 248.2%,reaching a high value of 5.92Wm^(−2) in the artificial sea‐river water system.Furthermore,with the assistance of low‐quality heat at 50℃,the osmotic power is enhanced to an ultrahigh value of 9.68Wm^(−2),which outperforms those of the state‐of‐the‐art two‐dimensional(2D)nanochannel membranes.This exciting breakthrough demonstrates the enormous potential of the facile plasma‐treated 2D membranes for osmotic energy harvesting.展开更多
Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the co...Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the concept of Joule heating.Compared to traditional and additive manufacturing(AM)techniques,SPS gives unique control of the structural and microstructural features of Mg components.By doing so,their mechanical,tribological,and corrosion properties can be tailored.Although great advancements in this field have been made,these pieces of knowledge are scattered and have not been contextualized into a single work.The motivation of this work is to address this scientific gap and to provide a groundwork for understanding the basics of SPS manufacturing for Mg.To do so,the existing body of SPS Mg literature was first surveyed,with a focus on their structural formation and degradation mechanisms.It was found that successful Mg SPS fabrication highly depended on the processing temperature,particle size,and particle crystallinity.The addition of metal and ceramic composites also affected their microstructural features due to the Zener pinning effect.In degradative environments,their performance depends on their structural features and whether they have secondary phased composites.In industrial applications,SPS'd Mg was found to have great potential in biomedical,hydrogen storage,battery,automotive,and recycling sectors.The prospects to advance the field include using Mg as a doping agent for crystallite size refinement and using bulk metallic Mg-based glass powders for amorphous SPS components.Despite these findings,the interactions of multi-composites on the processing-structure-property relationships of SPS Mg is not well understood.In total,this work will provide a useful direction in the SPS field and serve as a milestone for future Mg-based SPS manufacturing.展开更多
Coaxial plasma guns are a type of plasma source that produces plasma which propagates radially and axially controlled by the shape of the ground electrode, which has attracted much interest in several applications. In...Coaxial plasma guns are a type of plasma source that produces plasma which propagates radially and axially controlled by the shape of the ground electrode, which has attracted much interest in several applications. In this work, a 120° opening angle of CPG nozzle is used as a plasma gun configuration that operates at the energy of 150 J. The ionization of polyethylene insulator between the electrodes of the gun produces a cloud of hydrogen and carbon plasma.The triple Langmuir probe and Faraday cup are used to measure plasma density and plasma temperature. These methods are used to measure the on-axis and off-axis plasma divergence of the coaxial plasma gun. The peak values of ion densities measured at a distance of 25 mm on-axis from the plasma gun are(1.6±0.5)×10^(19)m^(-3)and(2.8±0.6)×10^(19)m^(-3)for hydrogen and carbon plasma respectively and the peak temperature is 3.02±0.5 eV. The mean propagation velocity of plasma is calculated using the transit times of plasma at different distances from the plasma gun and is found to be 4.54±0.25 cm/μs and 1.81±0.18 cm/μs for hydrogen and carbon plasma respectively. The Debye radius is obtained from the measured experimental data that satisfies the thin sheath approximation. The shot-to-shot stability of plasma parameters facilitates the use of plasma guns in laboratory experiments. These types of plasma sources can be used in many applications like plasma opening switches, plasma devices, and as plasma sources.展开更多
The dual cylindrical inductively coupled plasma source,compared to the conventional structure of inductively coupled plasma source,can significantly improve the uniformity of plasma.It has an enhanced potential for ap...The dual cylindrical inductively coupled plasma source,compared to the conventional structure of inductively coupled plasma source,can significantly improve the uniformity of plasma.It has an enhanced potential for application in processes,such as etching and ashing.A uniform plasma can be obtained by allowing the remote plasma from the upper chamber modulate the main plasma generated in the lower chamber.In this study,a fluid model was employed to investigate a dual cylindrical inductively coupled Ar/O_(2)discharge.The effects of external parameters on electron density,electron temperature,O atomic density,and plasma uniformity in the main chamber were studied,and the reasons were analyzed.The results of this study show that remote power can control the plasma uniformity and increase the plasma density in the main chamber.As the remote power increased,plasma uniformity improved initially and then deteriorated.The main power affected the plasma density at the edge of the main chamber and can modulate the plasma density in the main chamber.The gas pressure affected both the uniformity and density of the plasma.As the gas pressure increased,the plasma uniformity deteriorated,but the free radical density improved.展开更多
During spacecraft re-entry,the challenge of measuring plasma sheath parameters directly contributes to difficulties in addressing communication blackout.In this work,we have discovered a phenomenon of multiple peaks i...During spacecraft re-entry,the challenge of measuring plasma sheath parameters directly contributes to difficulties in addressing communication blackout.In this work,we have discovered a phenomenon of multiple peaks in reflection data caused by the inhomogeneous plasma.Simulation results show that the multi-peak points fade away as the characteristic frequency is approached,resembling a series of gradually decreasing peaks.The positions and quantities of these points are positively correlated with electron density,yet they show no relation to collision frequency.This phenomenon is of significant reference value for future studies on the spatial distribution of plasmas,particularly for using microwave reflection signals in diagnosing the plasma sheath.展开更多
In astrophysics, the boundary conditions for plasma phenomena are provided by nature and the astronomer faces the problem of understanding them from a variety of observations [Hester J J et al 1996 Astrophys. J. 456 2...In astrophysics, the boundary conditions for plasma phenomena are provided by nature and the astronomer faces the problem of understanding them from a variety of observations [Hester J J et al 1996 Astrophys. J. 456 225], on the other hand, in laboratory plasma experiments the electromagnetic boundary conditions become a major problem in the set-up of the machine that produces the plasma, an issue that has to be investigated step by step and to be modified and adapted with great patience, in particular in the case of an innovative plasma confinement experiment. The PROTO-SPHERA machine [Alladio F et al 2006 Nucl. Fusion 46 S613] is a magnetic confinement experiment, that emulates in the laboratory the jet + torus plasma configurations often observed in astrophysics: an inner magnetized jet of plasma centered on the(approximate) axis of symmetry and surrounded by a magnetized plasma torus orthogonal to this jet. The PROTO-SPHERA plasma is simply connected, i.e., no metal current conducting rod is linked to the plasma torus, while instead it is the inner magnetized plasma jet(in the following always called the plasma centerpost) that is linked to the torus. It is mandatory that no spurious plasma current path modifies the optimal shape of the plasma centerpost. Moreover, as the plasma torus is produced and sustained, in absence of any applied inductive electric field, by the inner plasma centerpost through magnetic reconnections [Taylor J B and Turner M F 1989 Nucl.Fusion 29 219], it is required as well that spurious current paths do not surround the torus on its outboard, in order not to lower the efficiency of the magnetic reconnections that maintain the plasma torus at the expense of the plasma centerpost. Boundary conditions have been corrected,up to the point that the first sustainment in steady state has been achieved for the combined plasma.展开更多
A three-fluid equilibrium plasma with bulk plasma and energetic electrons has been observed on the Xuanlong-50(EXL-50) spherical torus, where the energetic electrons play a crucial role in sustaining the plasma curren...A three-fluid equilibrium plasma with bulk plasma and energetic electrons has been observed on the Xuanlong-50(EXL-50) spherical torus, where the energetic electrons play a crucial role in sustaining the plasma current and pressure. In this study, the equilibrium of a multi-fluid plasma was investigated by analyzing the relationship between the external vertical magnetic field(B_(V)),plasma current(I_(p)), the poloidal ratio(β_(p)) and the Shafranov formula. Remarkably, our research demonstrates some validity of the Shafranov formula in the presence of multi-fluid plasma in EXL-50 spherical torus. This finding holds significant importance for future reactors as it allows for differentiation between alpha particles and background plasma. The study of multi-fluid plasma provides a significant reference value for the equilibrium reconstruction of burning plasma involving alpha particles.展开更多
The matrix thermal properties have an important impact on laser-induced plasma,as the thermal effect dominates the interaction between ns-pulsed laser and matter,especially in metals.We used a series of pure metals an...The matrix thermal properties have an important impact on laser-induced plasma,as the thermal effect dominates the interaction between ns-pulsed laser and matter,especially in metals.We used a series of pure metals and aluminum alloys to measure plasma temperature and electron density through laser-induced breakdown spectroscopy,in order to investigate the effect of matrix thermal properties on laser-induced plasma.In pure metals,a significant negative linear correlation was observed between the matrix thermal storage coefficient and plasma temperature,while a weak correlation was observed with electron density.The results indicate that metals with low thermal conductivity or specific heat capacity require less laser energy for thermal diffusion or melting and evaporation,resulting in higher ablation rates and higher plasma temperatures.However,considering ionization energy,thermal effects may be a secondary factor affecting electron density.The experiment of aluminum alloy further confirms the influence of thermal conductivity on plasma temperature and its mechanism explanation.展开更多
A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static m...A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static magnetic field, direct current is applied to a circular coil located at the top of the chamber. By adjusting the magnetic field's configuration, which is done by altering the coil current and position, both the plasma uniformity and density can be significantly modulated. In the absence of the magnetic field, the plasma density exhibits an inhomogeneous distribution characterized by higher values at the plasma edge and lower values at the center. The introduction of a magnetic field generated by coils results in a significant increase in electron density near the coils. Furthermore, an increase in the sets of coils improves the uniformity of the plasma. By flexibly adjusting the positions of the coils and the applied current,a substantial enhancement in overall uniformity can be achieved. These findings demonstrate the feasibility of using this method for achieving uniform plasma densities in industrial applications.展开更多
X-ray sources with tunable energy spectra have a wide range of applications in different scenarios due to their different penetration depths.However,existing x-ray sources face difficulties in terms of energy regulati...X-ray sources with tunable energy spectra have a wide range of applications in different scenarios due to their different penetration depths.However,existing x-ray sources face difficulties in terms of energy regulation.In this paper,we present a scheme for tuning the energy spectrum of a betatron x-ray generated from a relativistic electron bunch oscillating in a plasma wakefield.The center energy of the x-ray source can be tuned from several keV to several hundred keV by changing the plasma density,thereby extending the control range by an order of magnitude.At different central energies,the brightness of the betatron radiation is in the range of 3.7×10^(22)to 5.5×10^(22)photons/(0.1%BW·s·mm^(2)·mrad^(2))and the photon divergence angle is about 2 mrad.This high-brightness,energy-controlled betatron source could pave the way to a wide range of applications requiring photons of specific energy,such as phase-contrast imaging in medicine,non-destructive testing and material analysis in industry,and imaging in nuclear physics.展开更多
This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor de-position.Substrate bulge height△h is a factor that affects the edge effect,and it was used t...This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor de-position.Substrate bulge height△h is a factor that affects the edge effect,and it was used to simulate plasma and guide the diamond-film deposition experiments.Finite-element software COMSOL Multiphysics was used to construct a multiphysics(electromagnetic,plasma,and fluid heat transfer fields)coupling model based on electron collision reaction.Raman spectroscopy and scanning electron microscopy were performed to characterize the experimental growth and validate the model.The simulation results reflected the experimental trends observed.Plasma discharge at the edge of the substrate accelerated due to the increase in△h(△h=0-3 mm),and the values of electron density(n_(c)),molar concentration of H(C_(H)),and molar concentration of CH_(3)(C_(CH_(3)))doubled at the edge(for the special concave sample with△h=−1 mm,the active chemical groups exhibited a decreased molar concentration at the edge of the substrate).At=0-3 mm,a high diamond growth rate and a large diamond grain size were observed at the edge of the substrate,and their values increased with.The uniformity of film thickness decreased with.The Raman spectra of all samples revealed the first-order characteristic peak of dia-mond near 1332 cm^(−1).When△h=−1 mm,tensile stress occurred in all regions of the film.When△h=1-3 mm,all areas in the film ex-hibited compressive stress.展开更多
Only a small amount of spectral information is collected because the collection solid angle of the optical fiber probe and lens is very limited when collecting spectral information.To overcome this limitation,this stu...Only a small amount of spectral information is collected because the collection solid angle of the optical fiber probe and lens is very limited when collecting spectral information.To overcome this limitation,this study presents a novel method for acquiring plasma spectral information from various spatial directions.A parabolic-shaped plasma spectral collection device(PSCD)is employed to effectively collect more spectral information into the spectrometer,thereby enhancing the overall spectral intensity.The research objects in this study were soil samples containing different concentrations of heavy metals Pb,Cr,and Cd.The results indicate that the PSCD significantly enhances the spectral signal,with an enhancement rate of up to 45%.Moreover,the signal-to-noise ratio also increases by as much as 36%.Simultaneously,when compared to the absence of a device,it is found that there is no significant variation in plasma temperature when the PSCD is utilized.This observation eliminates the impact of the spatial effect caused by the PSCD on the spectral intensity.Consequently,a concentrationspectral intensity relationship curve is established under the PSCD.The results revealed that the linear fitting R^(2)for Pb,Cr,and Cd increased by 0.011,0.001,and 0.054,respectively.Additionally,the limit of detection(LOD)decreased by 0.361 ppm,0.901 ppm,and 0.602 ppm,respectively.These findings indicate that the spectral enhancement rate elevates with the increase in heavy metal concentration.Hence,the PSCD can effectively enhance the spectral intensity and reduce the detection limit of heavy metals in soil.展开更多
This paper deals with wave propagation and power coupling in blue-core helicon plasma driven by various antennas and frequencies.It is found that compared to non-blue-core mode,for blue-core mode,the wave can propagat...This paper deals with wave propagation and power coupling in blue-core helicon plasma driven by various antennas and frequencies.It is found that compared to non-blue-core mode,for blue-core mode,the wave can propagate in the core region,and it decays sharply outside the core.The power absorption is lower and steeper in radius for blue-core mode.Regarding the effects of antenna geometry for blue-core mode,it shows that half helix antenna yields the strongest wave field and power absorption,while loop antenna yields the lowest.Moreover,near axis,for antennas with m=+1,the wave field increases with axial distance.In the core region,the wave number approaches to a saturation value at much lower frequency for non-blue-core mode compared to blue-core mode.The total loading resistance is much lower for blue-core mode.These findings are valuable to understanding the physics of blue-core helicon discharge and optimizing the experimental performance of blue-core helicon plasma sources for applications such as space propulsion and material treatment.展开更多
Enhancing plasma uniformity can be achieved by modifying coil and chamber structures in radio frequency inductively coupled plasma(ICP)to meet the demand for large-area and uniformly distributed plasma in industrial m...Enhancing plasma uniformity can be achieved by modifying coil and chamber structures in radio frequency inductively coupled plasma(ICP)to meet the demand for large-area and uniformly distributed plasma in industrial manufacturing.This study utilized a two-dimensional self-consistent fluid model to investigate how different coil configurations and chamber aspect ratios affect the radial uniformity of plasma in radio frequency ICP.The findings indicate that optimizing the radial spacing of the coil enhances plasma uniformity but with a reduction in electron density.Furthermore,optimizing the coil within the ICP reactor,using the interior point method in the Interior Point Optimizer significantly enhances plasma uniformity,elevating it from 56%to 96%within the range of the model sizes.Additionally,when the chamber aspect ratio k changes from 2.8 to 4.7,the plasma distribution changes from a center-high to a saddleshaped distribution.Moreover,the plasma uniformity becomes worse.Finally,adjusting process parameters,such as increasing source power and gas pressure,can enhance plasma uniformity.These findings contribute to optimizing the etching process by improving plasma radial uniformity.展开更多
A remote plasma,also referred to as a plasma plume(diffuse or filamentary),is normally formed downstream of an atmospheric pressure plasma jet.In this study,a diffuse plume is formed by increasing the bias voltage(U_(...A remote plasma,also referred to as a plasma plume(diffuse or filamentary),is normally formed downstream of an atmospheric pressure plasma jet.In this study,a diffuse plume is formed by increasing the bias voltage(U_(b))applied to the downstream electrode of an argon plasma jet excited by a negatively pulsed voltage.The results indicate that the plume is filamentary when U_(b)is low,which transits to the diffuse plume with increasing U_(b).The discharge initiated at the rising edge of the pulsed voltage is attributed to the diffuse plume,while that at the falling edge contributes to the filament in the plume.For the diffuse plume,the discharge intensity decreases with the increasing oxygen content(C_o).Fast photography reveals that the diffuse plume results from a negative streamer,which has a dark region near the nozzle with C_o=0%.However,the dark region is absent with C_o=0.5%.From the optical emission spectrum,the electron density,electron excitation temperature,gas temperature,and oxygen atom concentration are investigated.展开更多
The plasma density enhancement outside hollow electrodes in capacitively coupled radio-frequency(RF) discharges is investigated by a two-dimensional(2D) particle-in-cell/Monte-Carlo collision(PIC/MCC) model. Results s...The plasma density enhancement outside hollow electrodes in capacitively coupled radio-frequency(RF) discharges is investigated by a two-dimensional(2D) particle-in-cell/Monte-Carlo collision(PIC/MCC) model. Results show that plasma exists inside the cavity when the sheath inside the hollow electrode hole is fully collapsed, which is an essential condition for the plasma density enhancement outside hollow electrodes. In addition, the existence of the electron density peak at the orifice is generated via the hollow cathode effect(HCE), which plays an important role in the density enhancement. It is also found that the radial width of bulk plasma at the orifice affects the magnitude of the density enhancement, and narrow radial plasma bulk width at the orifice is not beneficial to obtain high-density plasma outside hollow electrodes.Higher electron density at the orifice, combined with larger radial plasma bulk width at the orifice,causes higher electron density outside hollow electrodes. The results also imply that the HCE strength inside the cavity cannot be determined by the magnitude of the electron density outside hollow electrodes.展开更多
Plasma catalysis has recently gained increased attention for its application in gas conversion,notably in processes like the dry reforming of methane aimed at transforming them into valuable chemicals and fuels.As thi...Plasma catalysis has recently gained increased attention for its application in gas conversion,notably in processes like the dry reforming of methane aimed at transforming them into valuable chemicals and fuels.As this field is still in its early developmental stages,there is a crucial necessity to explore the synergistic mechanism between plasma and catalysts.The optimization of catalysts is imperative to improve their selectivity and conversion rates for desired products in a plasma environment.Additionally,delving into microscale investigations of plasma characteristics,such as electron temperature and the density of energetic species,is essential to enhance the stability and activity of catalysts.This review examines recent advancements in various methane conversion techniques,encompassing Dry Reforming of Methane,Steam Methane Reforming,Pa rtial Oxidation of Metha ne,and Methane Decomposition utilizing non-thermal dielectric barrier discharge(DBD)plasma.The aim is to gain a deeper understanding of plasma-catalyst interactions and to refine catalyst selection strategies for maximizing the production of desired products such as syngas,oxygenates,or higher hydrocarbons.The review delves into the catalytic mechanisms that delineate the synergistic effects between DBD plasma and catalyst in each technology,shedding light on the role of diverse catalytic properties in activating methane molecules-a pivotal step in hybrid plasma-catalytic reactions.Various approaches employed by researchers in exploring suitable catalysts and optimal reaction conditions to bolster CH_(4) conversion rates and selectivity using DBD plasma are discussed.Additionally,the review identifies gaps in the realm of plasma catalysis,underscoring the necessity for further research to fully understand the underlying principles of plasma and catalyst which are not trivial to uncover.展开更多
Endometriosis(EMS)is one of the most common disorders among women of reproductive age and affects approximately 6%–10%of the world total population^([1]).Women with EMS often experience symptoms such as dysmenorrhea,...Endometriosis(EMS)is one of the most common disorders among women of reproductive age and affects approximately 6%–10%of the world total population^([1]).Women with EMS often experience symptoms such as dysmenorrhea,infertility,or difficulties in conceiving.Recent studies focusing on amino acids(AAs)metabolism have shed light on the mechanisms underlying the development and progression of EMS^([2]).展开更多
The construction of a stable-membrane tracker has significant implications for the visualization of the membrane in live cells.However,most current plasma trackers are not suitable for tracking plasma membranes for a ...The construction of a stable-membrane tracker has significant implications for the visualization of the membrane in live cells.However,most current plasma trackers are not suitable for tracking plasma membranes for a long time due to their limited retention time.Herein,Mem580-F-Sulfo is designed to target and anchor cell membranes and therefore track cell membranes for a longer time.This tracker is composed of a lipophilic boron-dipyrromethene(BODIPY)derivative and a hydrophilic zwitterion to form an amphiphilic structure,which enables its targeting ability toward cell membranes.Moreover,a reactive ester group is included to bind with proteins through covalent bonds in cell membranes nonspecifically,which extends retention time in cell membranes.Mem580-F-Sulfo shows intense brightness(94600),with a high molar absorption coefficient of up to about 100000 L·mol^(-1)·cm^(-1)and a fluorescence quantum yield of up to 0.97.It shows fast cell membrane targeting ability and long retention up to 90 min.In brief,this work has not only developed a tracker with good cell membrane targetability but also provided a new strategy for improving the targeting stability of cell membranes.展开更多
Chagas disease (CD) affects 21 countries in the Americas and is caused by the parasite Trypanosoma cruzi. A key molecule involved in CD is lysophosphatidylcholine (LPC), which has been studied in various contexts: in ...Chagas disease (CD) affects 21 countries in the Americas and is caused by the parasite Trypanosoma cruzi. A key molecule involved in CD is lysophosphatidylcholine (LPC), which has been studied in various contexts: in the saliva of insect vectors, during the establishment of infection in the vertebrate host, and for the parasite itself. This lipid can be produced by the action of phospholipases A2 (PLA2), enzymes that catalyze the hydrolysis of phospholipids releasing fatty acids and lysophospholipids, such as LPC. This study investigates LPC levels and PLA2 activities in the plasma of CD patients and compares these levels with those in healthy individuals and patients with idiopathic dilated cardiomyopathy (IDCM). Plasma from 64 CD patients, 54 healthy individuals, and 16 IDCM patients were analyzed. LPC levels and the activity of two types of phospholipase A2: secreted (sPLA2) and lipoprotein-associated (Lp-PLA2) were measured. LPC levels and sPLA2 activity were similar between CD patients and the control groups. However, there were notable differences in LPC levels and sPLA2 activity between subgroups of CD patients and IDCM patients. This study is the first to identify LPC in patients with CD across various stages of the disease. It also offers new insights into the biochemical changes observed in the plasma of patients with IDCM.展开更多
基金National Natural Science Foundation of China,Grant/Award Number:52175174China Postdoctoral Science Foundation,Grant/Award Number:2022M721791National Key Research and Development Program of China,Grant/Award Number:2020YFA0711003。
文摘Nanofluidic channels inspired by electric eels open a new era of efficient harvesting of clean blue osmotic energy from salinity gradients.Limited by less charge and weak ion selectivity of the raw material itself,energy conversion through nanofluidic channels is still facing considerable challenges.Here,a facile and efficient strategy to enhance osmotic energy harvesting based on drastically increasing surface charge density of MXenes subnanochannels via oxygen plasma is proposed.This plasma could break Ti–C bonds in the MXenes subnanochannels and effectively facilitate the formation of more Ti–O,C═O,O–OH,and rutile with a stronger negative charge and work function,which leads the surface potential of MXenes membrane to increase from 205 to 430 mV.This significant rise of surface charge endows the MXenes membrane with high cation selectivity,which could make the output power density of the MXenes membrane increase by 248.2%,reaching a high value of 5.92Wm^(−2) in the artificial sea‐river water system.Furthermore,with the assistance of low‐quality heat at 50℃,the osmotic power is enhanced to an ultrahigh value of 9.68Wm^(−2),which outperforms those of the state‐of‐the‐art two‐dimensional(2D)nanochannel membranes.This exciting breakthrough demonstrates the enormous potential of the facile plasma‐treated 2D membranes for osmotic energy harvesting.
文摘Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the concept of Joule heating.Compared to traditional and additive manufacturing(AM)techniques,SPS gives unique control of the structural and microstructural features of Mg components.By doing so,their mechanical,tribological,and corrosion properties can be tailored.Although great advancements in this field have been made,these pieces of knowledge are scattered and have not been contextualized into a single work.The motivation of this work is to address this scientific gap and to provide a groundwork for understanding the basics of SPS manufacturing for Mg.To do so,the existing body of SPS Mg literature was first surveyed,with a focus on their structural formation and degradation mechanisms.It was found that successful Mg SPS fabrication highly depended on the processing temperature,particle size,and particle crystallinity.The addition of metal and ceramic composites also affected their microstructural features due to the Zener pinning effect.In degradative environments,their performance depends on their structural features and whether they have secondary phased composites.In industrial applications,SPS'd Mg was found to have great potential in biomedical,hydrogen storage,battery,automotive,and recycling sectors.The prospects to advance the field include using Mg as a doping agent for crystallite size refinement and using bulk metallic Mg-based glass powders for amorphous SPS components.Despite these findings,the interactions of multi-composites on the processing-structure-property relationships of SPS Mg is not well understood.In total,this work will provide a useful direction in the SPS field and serve as a milestone for future Mg-based SPS manufacturing.
基金supported by Bhabha Atomic Research Centre, Department of Atomic Energy, Government of IndiaDepartment of Atomic Energy, Government of India for financial assistance under DAE Doctoral Fellowship Scheme-2018。
文摘Coaxial plasma guns are a type of plasma source that produces plasma which propagates radially and axially controlled by the shape of the ground electrode, which has attracted much interest in several applications. In this work, a 120° opening angle of CPG nozzle is used as a plasma gun configuration that operates at the energy of 150 J. The ionization of polyethylene insulator between the electrodes of the gun produces a cloud of hydrogen and carbon plasma.The triple Langmuir probe and Faraday cup are used to measure plasma density and plasma temperature. These methods are used to measure the on-axis and off-axis plasma divergence of the coaxial plasma gun. The peak values of ion densities measured at a distance of 25 mm on-axis from the plasma gun are(1.6±0.5)×10^(19)m^(-3)and(2.8±0.6)×10^(19)m^(-3)for hydrogen and carbon plasma respectively and the peak temperature is 3.02±0.5 eV. The mean propagation velocity of plasma is calculated using the transit times of plasma at different distances from the plasma gun and is found to be 4.54±0.25 cm/μs and 1.81±0.18 cm/μs for hydrogen and carbon plasma respectively. The Debye radius is obtained from the measured experimental data that satisfies the thin sheath approximation. The shot-to-shot stability of plasma parameters facilitates the use of plasma guns in laboratory experiments. These types of plasma sources can be used in many applications like plasma opening switches, plasma devices, and as plasma sources.
基金financially supported by National Natural Science Foundation of China(Nos.12075049 and 11935005)。
文摘The dual cylindrical inductively coupled plasma source,compared to the conventional structure of inductively coupled plasma source,can significantly improve the uniformity of plasma.It has an enhanced potential for application in processes,such as etching and ashing.A uniform plasma can be obtained by allowing the remote plasma from the upper chamber modulate the main plasma generated in the lower chamber.In this study,a fluid model was employed to investigate a dual cylindrical inductively coupled Ar/O_(2)discharge.The effects of external parameters on electron density,electron temperature,O atomic density,and plasma uniformity in the main chamber were studied,and the reasons were analyzed.The results of this study show that remote power can control the plasma uniformity and increase the plasma density in the main chamber.As the remote power increased,plasma uniformity improved initially and then deteriorated.The main power affected the plasma density at the edge of the main chamber and can modulate the plasma density in the main chamber.The gas pressure affected both the uniformity and density of the plasma.As the gas pressure increased,the plasma uniformity deteriorated,but the free radical density improved.
文摘During spacecraft re-entry,the challenge of measuring plasma sheath parameters directly contributes to difficulties in addressing communication blackout.In this work,we have discovered a phenomenon of multiple peaks in reflection data caused by the inhomogeneous plasma.Simulation results show that the multi-peak points fade away as the characteristic frequency is approached,resembling a series of gradually decreasing peaks.The positions and quantities of these points are positively correlated with electron density,yet they show no relation to collision frequency.This phenomenon is of significant reference value for future studies on the spatial distribution of plasmas,particularly for using microwave reflection signals in diagnosing the plasma sheath.
文摘In astrophysics, the boundary conditions for plasma phenomena are provided by nature and the astronomer faces the problem of understanding them from a variety of observations [Hester J J et al 1996 Astrophys. J. 456 225], on the other hand, in laboratory plasma experiments the electromagnetic boundary conditions become a major problem in the set-up of the machine that produces the plasma, an issue that has to be investigated step by step and to be modified and adapted with great patience, in particular in the case of an innovative plasma confinement experiment. The PROTO-SPHERA machine [Alladio F et al 2006 Nucl. Fusion 46 S613] is a magnetic confinement experiment, that emulates in the laboratory the jet + torus plasma configurations often observed in astrophysics: an inner magnetized jet of plasma centered on the(approximate) axis of symmetry and surrounded by a magnetized plasma torus orthogonal to this jet. The PROTO-SPHERA plasma is simply connected, i.e., no metal current conducting rod is linked to the plasma torus, while instead it is the inner magnetized plasma jet(in the following always called the plasma centerpost) that is linked to the torus. It is mandatory that no spurious plasma current path modifies the optimal shape of the plasma centerpost. Moreover, as the plasma torus is produced and sustained, in absence of any applied inductive electric field, by the inner plasma centerpost through magnetic reconnections [Taylor J B and Turner M F 1989 Nucl.Fusion 29 219], it is required as well that spurious current paths do not surround the torus on its outboard, in order not to lower the efficiency of the magnetic reconnections that maintain the plasma torus at the expense of the plasma centerpost. Boundary conditions have been corrected,up to the point that the first sustainment in steady state has been achieved for the combined plasma.
文摘A three-fluid equilibrium plasma with bulk plasma and energetic electrons has been observed on the Xuanlong-50(EXL-50) spherical torus, where the energetic electrons play a crucial role in sustaining the plasma current and pressure. In this study, the equilibrium of a multi-fluid plasma was investigated by analyzing the relationship between the external vertical magnetic field(B_(V)),plasma current(I_(p)), the poloidal ratio(β_(p)) and the Shafranov formula. Remarkably, our research demonstrates some validity of the Shafranov formula in the presence of multi-fluid plasma in EXL-50 spherical torus. This finding holds significant importance for future reactors as it allows for differentiation between alpha particles and background plasma. The study of multi-fluid plasma provides a significant reference value for the equilibrium reconstruction of burning plasma involving alpha particles.
基金supported by the National Key Research and Development Project(Grant No.2018YFC2001100).
文摘The matrix thermal properties have an important impact on laser-induced plasma,as the thermal effect dominates the interaction between ns-pulsed laser and matter,especially in metals.We used a series of pure metals and aluminum alloys to measure plasma temperature and electron density through laser-induced breakdown spectroscopy,in order to investigate the effect of matrix thermal properties on laser-induced plasma.In pure metals,a significant negative linear correlation was observed between the matrix thermal storage coefficient and plasma temperature,while a weak correlation was observed with electron density.The results indicate that metals with low thermal conductivity or specific heat capacity require less laser energy for thermal diffusion or melting and evaporation,resulting in higher ablation rates and higher plasma temperatures.However,considering ionization energy,thermal effects may be a secondary factor affecting electron density.The experiment of aluminum alloy further confirms the influence of thermal conductivity on plasma temperature and its mechanism explanation.
基金financially supported by the National MCF Energy R&D Program of China(No.2022YFE03190100)National Natural Science Foundation of China(Nos.11935005,12105035 and U21A20438)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2021B1515120018)the Fundamental Research Funds for the Central Universities(No.DUT21TD104)the Advanced Space Propulsion Laboratory of BICE and Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology(No.Lab ASP-2020-01).
文摘A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static magnetic field, direct current is applied to a circular coil located at the top of the chamber. By adjusting the magnetic field's configuration, which is done by altering the coil current and position, both the plasma uniformity and density can be significantly modulated. In the absence of the magnetic field, the plasma density exhibits an inhomogeneous distribution characterized by higher values at the plasma edge and lower values at the center. The introduction of a magnetic field generated by coils results in a significant increase in electron density near the coils. Furthermore, an increase in the sets of coils improves the uniformity of the plasma. By flexibly adjusting the positions of the coils and the applied current,a substantial enhancement in overall uniformity can be achieved. These findings demonstrate the feasibility of using this method for achieving uniform plasma densities in industrial applications.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11921006 and 12175058)the Beijing Distinguished Young Scientist Program and National Grand Instrument Project (Grant No.SQ2019YFF01014400)+1 种基金the Beijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park (Grant No.Z231100006023003)in part funded by United Kingdom EPSRC (Grant Nos.EP/G054950/1,EP/G056803/1,EP/G055165/1,and EP/M022463/1)。
文摘X-ray sources with tunable energy spectra have a wide range of applications in different scenarios due to their different penetration depths.However,existing x-ray sources face difficulties in terms of energy regulation.In this paper,we present a scheme for tuning the energy spectrum of a betatron x-ray generated from a relativistic electron bunch oscillating in a plasma wakefield.The center energy of the x-ray source can be tuned from several keV to several hundred keV by changing the plasma density,thereby extending the control range by an order of magnitude.At different central energies,the brightness of the betatron radiation is in the range of 3.7×10^(22)to 5.5×10^(22)photons/(0.1%BW·s·mm^(2)·mrad^(2))and the photon divergence angle is about 2 mrad.This high-brightness,energy-controlled betatron source could pave the way to a wide range of applications requiring photons of specific energy,such as phase-contrast imaging in medicine,non-destructive testing and material analysis in industry,and imaging in nuclear physics.
基金supported by the National Key Research and Development Program(No.2019YFE03100200)the State Key Lab for Advanced Metals and Materials,the Fund of National Key Laboratory of Solid-State Microwave Devices and Circuits,the National Natural Science Foundation of China(No.52102034)the Or-ganized Research Fund of North China University of Tech-nology(No.2023YZZKY12).The authors are very grateful for the financial support of these institutions.
文摘This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor de-position.Substrate bulge height△h is a factor that affects the edge effect,and it was used to simulate plasma and guide the diamond-film deposition experiments.Finite-element software COMSOL Multiphysics was used to construct a multiphysics(electromagnetic,plasma,and fluid heat transfer fields)coupling model based on electron collision reaction.Raman spectroscopy and scanning electron microscopy were performed to characterize the experimental growth and validate the model.The simulation results reflected the experimental trends observed.Plasma discharge at the edge of the substrate accelerated due to the increase in△h(△h=0-3 mm),and the values of electron density(n_(c)),molar concentration of H(C_(H)),and molar concentration of CH_(3)(C_(CH_(3)))doubled at the edge(for the special concave sample with△h=−1 mm,the active chemical groups exhibited a decreased molar concentration at the edge of the substrate).At=0-3 mm,a high diamond growth rate and a large diamond grain size were observed at the edge of the substrate,and their values increased with.The uniformity of film thickness decreased with.The Raman spectra of all samples revealed the first-order characteristic peak of dia-mond near 1332 cm^(−1).When△h=−1 mm,tensile stress occurred in all regions of the film.When△h=1-3 mm,all areas in the film ex-hibited compressive stress.
基金supported by Department of Science and Technology of Jilin Province of China(Nos.YDZJ202301 ZYTS481,202202901032GX,and 20230402068GH)。
文摘Only a small amount of spectral information is collected because the collection solid angle of the optical fiber probe and lens is very limited when collecting spectral information.To overcome this limitation,this study presents a novel method for acquiring plasma spectral information from various spatial directions.A parabolic-shaped plasma spectral collection device(PSCD)is employed to effectively collect more spectral information into the spectrometer,thereby enhancing the overall spectral intensity.The research objects in this study were soil samples containing different concentrations of heavy metals Pb,Cr,and Cd.The results indicate that the PSCD significantly enhances the spectral signal,with an enhancement rate of up to 45%.Moreover,the signal-to-noise ratio also increases by as much as 36%.Simultaneously,when compared to the absence of a device,it is found that there is no significant variation in plasma temperature when the PSCD is utilized.This observation eliminates the impact of the spatial effect caused by the PSCD on the spectral intensity.Consequently,a concentrationspectral intensity relationship curve is established under the PSCD.The results revealed that the linear fitting R^(2)for Pb,Cr,and Cd increased by 0.011,0.001,and 0.054,respectively.Additionally,the limit of detection(LOD)decreased by 0.361 ppm,0.901 ppm,and 0.602 ppm,respectively.These findings indicate that the spectral enhancement rate elevates with the increase in heavy metal concentration.Hence,the PSCD can effectively enhance the spectral intensity and reduce the detection limit of heavy metals in soil.
基金Project supported by the National Natural Science Foundation of China(Grant No.92271113)the Fundamental Research Funds for the Central Universities(Grant No.2022CDJQY-003)+1 种基金Chongqing Entrepreneurship and Innovation Support Program for Overseas Returnees(Grant No.CX2022004)the Fund from Shanghai Engineering Research Center of Space Engine(Grant No.17DZ2280800).
文摘This paper deals with wave propagation and power coupling in blue-core helicon plasma driven by various antennas and frequencies.It is found that compared to non-blue-core mode,for blue-core mode,the wave can propagate in the core region,and it decays sharply outside the core.The power absorption is lower and steeper in radius for blue-core mode.Regarding the effects of antenna geometry for blue-core mode,it shows that half helix antenna yields the strongest wave field and power absorption,while loop antenna yields the lowest.Moreover,near axis,for antennas with m=+1,the wave field increases with axial distance.In the core region,the wave number approaches to a saturation value at much lower frequency for non-blue-core mode compared to blue-core mode.The total loading resistance is much lower for blue-core mode.These findings are valuable to understanding the physics of blue-core helicon discharge and optimizing the experimental performance of blue-core helicon plasma sources for applications such as space propulsion and material treatment.
基金supported by the Scientific Research Foundation of Xijing University,China(No.XJ19T03)the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory(No.ZHD201701)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2024JC-YBMS-342).
文摘Enhancing plasma uniformity can be achieved by modifying coil and chamber structures in radio frequency inductively coupled plasma(ICP)to meet the demand for large-area and uniformly distributed plasma in industrial manufacturing.This study utilized a two-dimensional self-consistent fluid model to investigate how different coil configurations and chamber aspect ratios affect the radial uniformity of plasma in radio frequency ICP.The findings indicate that optimizing the radial spacing of the coil enhances plasma uniformity but with a reduction in electron density.Furthermore,optimizing the coil within the ICP reactor,using the interior point method in the Interior Point Optimizer significantly enhances plasma uniformity,elevating it from 56%to 96%within the range of the model sizes.Additionally,when the chamber aspect ratio k changes from 2.8 to 4.7,the plasma distribution changes from a center-high to a saddleshaped distribution.Moreover,the plasma uniformity becomes worse.Finally,adjusting process parameters,such as increasing source power and gas pressure,can enhance plasma uniformity.These findings contribute to optimizing the etching process by improving plasma radial uniformity.
基金supported by National Natural Science Foundation of China(Nos.12375250,11875121,51977057 and 11805013)the Natural Science Foundation of Hebei Province(Nos.A2020201025 and A2022201036)+3 种基金Hebei Province Optoelectronic Information Materials Laboratory Performance Subsidy Fund Project(No.22567634H)Funds for Distinguished Young Scientists of Hebei Province(No.A2012201045)the Natural Science Interdisciplinary Research Program of Hebei University(Nos.DXK201908 and DXK202011)the Post-graduate’s Innovation Fund Project of Hebei University(No.HBU2022bs004)。
文摘A remote plasma,also referred to as a plasma plume(diffuse or filamentary),is normally formed downstream of an atmospheric pressure plasma jet.In this study,a diffuse plume is formed by increasing the bias voltage(U_(b))applied to the downstream electrode of an argon plasma jet excited by a negatively pulsed voltage.The results indicate that the plume is filamentary when U_(b)is low,which transits to the diffuse plume with increasing U_(b).The discharge initiated at the rising edge of the pulsed voltage is attributed to the diffuse plume,while that at the falling edge contributes to the filament in the plume.For the diffuse plume,the discharge intensity decreases with the increasing oxygen content(C_o).Fast photography reveals that the diffuse plume results from a negative streamer,which has a dark region near the nozzle with C_o=0%.However,the dark region is absent with C_o=0.5%.From the optical emission spectrum,the electron density,electron excitation temperature,gas temperature,and oxygen atom concentration are investigated.
文摘The plasma density enhancement outside hollow electrodes in capacitively coupled radio-frequency(RF) discharges is investigated by a two-dimensional(2D) particle-in-cell/Monte-Carlo collision(PIC/MCC) model. Results show that plasma exists inside the cavity when the sheath inside the hollow electrode hole is fully collapsed, which is an essential condition for the plasma density enhancement outside hollow electrodes. In addition, the existence of the electron density peak at the orifice is generated via the hollow cathode effect(HCE), which plays an important role in the density enhancement. It is also found that the radial width of bulk plasma at the orifice affects the magnitude of the density enhancement, and narrow radial plasma bulk width at the orifice is not beneficial to obtain high-density plasma outside hollow electrodes.Higher electron density at the orifice, combined with larger radial plasma bulk width at the orifice,causes higher electron density outside hollow electrodes. The results also imply that the HCE strength inside the cavity cannot be determined by the magnitude of the electron density outside hollow electrodes.
文摘Plasma catalysis has recently gained increased attention for its application in gas conversion,notably in processes like the dry reforming of methane aimed at transforming them into valuable chemicals and fuels.As this field is still in its early developmental stages,there is a crucial necessity to explore the synergistic mechanism between plasma and catalysts.The optimization of catalysts is imperative to improve their selectivity and conversion rates for desired products in a plasma environment.Additionally,delving into microscale investigations of plasma characteristics,such as electron temperature and the density of energetic species,is essential to enhance the stability and activity of catalysts.This review examines recent advancements in various methane conversion techniques,encompassing Dry Reforming of Methane,Steam Methane Reforming,Pa rtial Oxidation of Metha ne,and Methane Decomposition utilizing non-thermal dielectric barrier discharge(DBD)plasma.The aim is to gain a deeper understanding of plasma-catalyst interactions and to refine catalyst selection strategies for maximizing the production of desired products such as syngas,oxygenates,or higher hydrocarbons.The review delves into the catalytic mechanisms that delineate the synergistic effects between DBD plasma and catalyst in each technology,shedding light on the role of diverse catalytic properties in activating methane molecules-a pivotal step in hybrid plasma-catalytic reactions.Various approaches employed by researchers in exploring suitable catalysts and optimal reaction conditions to bolster CH_(4) conversion rates and selectivity using DBD plasma are discussed.Additionally,the review identifies gaps in the realm of plasma catalysis,underscoring the necessity for further research to fully understand the underlying principles of plasma and catalyst which are not trivial to uncover.
基金supported by the Key Collaborative Research Projects of the China Academy of Chinese Medicine Science[CI2022C003]The Escort Project of Guang’anmen Hospital,China Academy of Chinese Medicine Science-Backbone Talent Cultivation Project[9323065].
文摘Endometriosis(EMS)is one of the most common disorders among women of reproductive age and affects approximately 6%–10%of the world total population^([1]).Women with EMS often experience symptoms such as dysmenorrhea,infertility,or difficulties in conceiving.Recent studies focusing on amino acids(AAs)metabolism have shed light on the mechanisms underlying the development and progression of EMS^([2]).
基金supported by the National Natural Science Foundation of China(22278059,22174009,and 22078047)Fundamental Research Funds for the Central Universities(DUT22LAB601 and DUT22LAB608)。
文摘The construction of a stable-membrane tracker has significant implications for the visualization of the membrane in live cells.However,most current plasma trackers are not suitable for tracking plasma membranes for a long time due to their limited retention time.Herein,Mem580-F-Sulfo is designed to target and anchor cell membranes and therefore track cell membranes for a longer time.This tracker is composed of a lipophilic boron-dipyrromethene(BODIPY)derivative and a hydrophilic zwitterion to form an amphiphilic structure,which enables its targeting ability toward cell membranes.Moreover,a reactive ester group is included to bind with proteins through covalent bonds in cell membranes nonspecifically,which extends retention time in cell membranes.Mem580-F-Sulfo shows intense brightness(94600),with a high molar absorption coefficient of up to about 100000 L·mol^(-1)·cm^(-1)and a fluorescence quantum yield of up to 0.97.It shows fast cell membrane targeting ability and long retention up to 90 min.In brief,this work has not only developed a tracker with good cell membrane targetability but also provided a new strategy for improving the targeting stability of cell membranes.
文摘Chagas disease (CD) affects 21 countries in the Americas and is caused by the parasite Trypanosoma cruzi. A key molecule involved in CD is lysophosphatidylcholine (LPC), which has been studied in various contexts: in the saliva of insect vectors, during the establishment of infection in the vertebrate host, and for the parasite itself. This lipid can be produced by the action of phospholipases A2 (PLA2), enzymes that catalyze the hydrolysis of phospholipids releasing fatty acids and lysophospholipids, such as LPC. This study investigates LPC levels and PLA2 activities in the plasma of CD patients and compares these levels with those in healthy individuals and patients with idiopathic dilated cardiomyopathy (IDCM). Plasma from 64 CD patients, 54 healthy individuals, and 16 IDCM patients were analyzed. LPC levels and the activity of two types of phospholipase A2: secreted (sPLA2) and lipoprotein-associated (Lp-PLA2) were measured. LPC levels and sPLA2 activity were similar between CD patients and the control groups. However, there were notable differences in LPC levels and sPLA2 activity between subgroups of CD patients and IDCM patients. This study is the first to identify LPC in patients with CD across various stages of the disease. It also offers new insights into the biochemical changes observed in the plasma of patients with IDCM.