期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Accelerating Oxygen Electrocatalysis Kinetics on Metal-Organic Frameworks via Bond Length Optimization 被引量:2
1
作者 Fan He Yingnan Liu +10 位作者 Xiaoxuan Yang Yaqi Chen Cheng‑Chieh Yang Chung‑Li Dong Qinggang He Bin Yang Zhongjian Li Yongbo Kuang Lecheng Lei Liming Dai Yang Hou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期279-290,共12页
Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hamper... Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting. 展开更多
关键词 Metal-organic frameworks Bond length adjustment Spin state transition Orbitals hybridization Water splitting
下载PDF
Optimization of aero-engine pipeline for avoiding vibration based on length adjustment of straight-line segment 被引量:2
2
作者 Wenhao JI Wei SUN +1 位作者 Donghai WANG Zhonghua LIU 《Frontiers of Mechanical Engineering》 SCIE CSCD 2022年第1期100-116,共17页
In the design and troubleshooting of aero-engine pipeline,the vibration reduction of the pipeline system is often achieved by adjusting the hoop layout,provided that the shape of pipeline remains unchanged.However,in ... In the design and troubleshooting of aero-engine pipeline,the vibration reduction of the pipeline system is often achieved by adjusting the hoop layout,provided that the shape of pipeline remains unchanged.However,in reality,the pipeline system with the best antivibration performance may be obtained only by adjusting the pipeline shape.In this paper,a typical spatial pipeline is taken as the research object,the length of straight-line segment is taken as the design variable,and an innovative optimization method of avoiding vibration of aero-engine pipeline is proposed.The relationship between straight-line segment length and parameters that determine the geometric characteristics of the pipeline,such as the position of key reference points,bending angle,and hoop position,are derived in detail.Based on this,the parametric finite element model of the pipeline system is established.Taking the maximum first-order natural frequency of pipeline as the optimization objective and introducing process constraints and vibration avoidance constraints,the optimization model of the pipeline system is established.The genetic algorithm and the golden section algorithm are selected to solve the optimization model,and the relevant solution procedure is described in detail.Finally,two kinds of pipelines with different total lengths are selected to carry out a case study.Based on the analysis of the influence of straight-line segment length on the vibration characteristics of the pipeline system,the optimization methods developed in this paper are demonstrated.Results show that the developed optimization method can obtain the optimal single value or interval of the straight-line segment length while avoiding the excitation frequency.In addition,the optimization efficiency of the golden section algorithm is remarkably higher than that of the genetic algorithm for length optimization of a single straight-line segment. 展开更多
关键词 length adjustment spatial pipeline AERO-ENGINE vibration avoidance optimization genetic algorithm golden section algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部