期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于LAAE网络的跨语言短文本情感分析方法 被引量:1
1
作者 沈江红 廖晓东 《计算机系统应用》 2021年第6期203-208,共6页
跨语言短文本情感分析作为自然语言处理领域的一项重要的任务,近年来备受关注.跨语言情感分析能够利用资源丰富的源语言标注数据对资源匮乏的目标语言数据进行情感分析,建立语言之间的联系是该任务的核心.与传统的机器翻译建立联系方法... 跨语言短文本情感分析作为自然语言处理领域的一项重要的任务,近年来备受关注.跨语言情感分析能够利用资源丰富的源语言标注数据对资源匮乏的目标语言数据进行情感分析,建立语言之间的联系是该任务的核心.与传统的机器翻译建立联系方法相比,迁移学习更胜一筹,而高质量的跨语言文本向量则会提升迁移效果.本文提出LAAE网络模型,该模型通过长短记忆网络(LSTM)和对抗式自编码器(AAE)获得含上下文情感信息的跨语言向量,然后利用双向GRU (Gated Recurrent Unite)进行后续情感分类任务.其中,分类器首先在源语言上进行训练,最后迁移到目标语言上进行分类任务.本方法的有效性体现在实验结果中. 展开更多
关键词 跨语言情感分析 迁移学习 长短记忆网络 对抗式自编码器 双向GRU
下载PDF
面向不平衡图像数据的对抗自编码器过采样算法
2
作者 职为梅 常智 +1 位作者 卢俊华 耿正乾 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第11期4208-4218,共11页
许多适用于低维数据的传统不平衡学习算法在图像数据上的效果并不理想。基于生成对抗网络(GAN)的过采样算法虽然可以生成高质量图像,但在类不平衡情况下容易产生模式崩溃问题。基于自编码器(AE)的过采样算法容易训练,但生成的图像质量... 许多适用于低维数据的传统不平衡学习算法在图像数据上的效果并不理想。基于生成对抗网络(GAN)的过采样算法虽然可以生成高质量图像,但在类不平衡情况下容易产生模式崩溃问题。基于自编码器(AE)的过采样算法容易训练,但生成的图像质量较低。为进一步提高过采样算法在不平衡图像中生成样本的质量和训练的稳定性,该文基于生成对抗网络和自编码器的思想提出一种融合自编码器和生成对抗网络的过采样算法(BAEGAN)。首先在自编码器中引入一个条件嵌入层,使用预训练的条件自编码器初始化GAN以稳定模型训练;然后改进判别器的输出结构,引入一种融合焦点损失和梯度惩罚的损失函数以减轻类不平衡的影响;最后从潜在向量的分布映射中使用合成少数类过采样技术(SMOTE)来生成高质量的图像。在4个图像数据集上的实验结果表明该算法在生成图像质量和过采样后的分类性能上优于具有辅助分类器的条件生成对抗网络(ACGAN)、平衡生成对抗网络(BAGAN)等过采样算法,能有效解决图像数据中的类不平衡问题。 展开更多
关键词 不平衡图像数据 过采样 生成对抗网络 对抗自编码器 合成少数类过采样技术
下载PDF
基于逐层互信息对抗自编码器的城市供热管网故障检测
3
作者 刘自鹏 李灵 +3 位作者 刘述 李磊 熊凌云 刘雅儒 《市政技术》 2024年第5期220-227,共8页
城市集体供热管网属于市政工程管网的重要组成部分,其安全稳定运行与城市经济生产和居民日常生活息息相关,因此对供热管网进行准确实时的状态监测至关重要。近年来,基于深度学习的方法已经被广泛应用于状态监测领域,如对抗自编码器(adve... 城市集体供热管网属于市政工程管网的重要组成部分,其安全稳定运行与城市经济生产和居民日常生活息息相关,因此对供热管网进行准确实时的状态监测至关重要。近年来,基于深度学习的方法已经被广泛应用于状态监测领域,如对抗自编码器(adversarial auto-encoder,AAE)。然而,从信息论的角度看,在AAE模型训练过程中样本与特征表示之间的互信息存在衰减现象,从而直接影响到该网络模型的故障检测性能。为此,提出了一种基于逐层互信息对抗自编码器(layer-by-layer mutual information adversarial auto-encoder,LM-AAE)的故障检测方法,该方法通过显性引入低维特征空间与前面每一层神经网络的互信息,以最大化正常输入样本与特征表示之间的相关性,有效克服了AAE模型训练过程中的互信息衰减问题。最后,将LM-AAE模型、VAE模型和传统AAE模型分别用于连续搅拌釜式加热器实验,结果表明LM-AAE模型在保证较小故障漏报率的同时具有最小的故障误报率。证明了引入逐层互信息策略可以使模型在故障检测任务中更具优越性。 展开更多
关键词 供热管网 故障检测 无监督学习 对抗自编码器 逐层互信息
下载PDF
基于对抗自编码网络的水利数据补全方法 被引量:3
4
作者 季琳雅 吕鑫 +1 位作者 陶飞飞 曾涛 《计算机工程》 CAS CSCD 北大核心 2019年第4期307-310,共4页
在大规模监测系统中,监测点失效会导致数据缺失,从而影响数据分析结果的准确性。为此,提出一种对抗自编码的水利数据补全方法。利用自编码器构造生成网络,并提取监测点的数据特征,将其与训练好的判别网络进行对抗,最终补全待修复的监测... 在大规模监测系统中,监测点失效会导致数据缺失,从而影响数据分析结果的准确性。为此,提出一种对抗自编码的水利数据补全方法。利用自编码器构造生成网络,并提取监测点的数据特征,将其与训练好的判别网络进行对抗,最终补全待修复的监测数据。实验结果表明,与基于图正则化局部子表示方法相比,该方法具有较高的补全精确度,且均方误差较小,能够有效地重构监测数据。 展开更多
关键词 水利监测数据 数据缺失与补全 对抗自编码网络 对抗正则化 重构误差
下载PDF
Auxiliary generative mutual adversarial networks for class-imbalanced fault diagnosis under small samples
5
作者 Ranran LI Shunming LI +4 位作者 Kun XU Mengjie ZENG Xianglian LI Jianfeng GU Yong CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第9期464-478,共15页
The effect of intelligent fault diagnosis of mechanical equipment based on data-driven is often premised on big data and class-balance.However,due to the limitation of working environment,operating conditions and equi... The effect of intelligent fault diagnosis of mechanical equipment based on data-driven is often premised on big data and class-balance.However,due to the limitation of working environment,operating conditions and equipment status,the fault data collected by mechanical equipment are often small and imbalanced with normal samples.Therefore,in order to solve the abovementioned dilemma faced by the fault diagnosis of practical mechanical equipment,an auxiliary generative mutual adversarial network(AGMAN)is proposed.Firstly,the generator combined with the auto-encoder(AE)constructs the decoder reconstruction feature loss to assist it to complete the accurate mapping between noise distribution and real data distribution,generate highquality fake samples,supplement the imbalanced dataset to improve the accuracy of small sample class-imbalanced fault diagnosis.Secondly,the discriminator introduces a structure with unshared dual discriminators.Realize the mutual adversarial between the dual discriminator by setting the scoring criteria that the dual discriminator are completely opposite to the real and fake samples,thus improving the quality and diversity of generated samples to avoid mode collapse.Finally,the auxiliary generator and the dual discriminator are updated alternately.The auxiliary generator can generate fake samples that deceive both discriminators at the same time.Meanwhile,the dual discriminator cannot give correct scores to the real and fake samples according to their respective scoring criteria,so as to achieve Nash equilibrium.Using three different test-bed datasets for verification,the experimental results show that the proposed method can explicitly generate highquality fake samples,which greatly improves the accuracy of class-unbalanced fault diagnosis under small sample,especially when it is extremely imbalanced,after using this method to supplement fake samples,the fault diagnosis accuracy of DCNN and SAE are relatively big improvements.So,the proposed method provides an effective solution for small sample class-unbalanced fault diagnosis. 展开更多
关键词 adversarial Networks auto-encoder Class-imbalanced Fault detection Small Samples
原文传递
Bi-GAE:A Bidirectional Generative Auto-Encoder
6
作者 华勤 胡瀚文 +2 位作者 钱诗友 杨定裕 曹健 《Journal of Computer Science & Technology》 SCIE EI CSCD 2023年第3期626-643,共18页
Improving the generative and representational capabilities of auto-encoders is a hot research topic. However, it is a challenge to jointly and simultaneously optimize the bidirectional mapping between the encoder and ... Improving the generative and representational capabilities of auto-encoders is a hot research topic. However, it is a challenge to jointly and simultaneously optimize the bidirectional mapping between the encoder and the decoder/generator while ensuing convergence. Most existing auto-encoders cannot automatically trade off bidirectional mapping. In this work, we propose Bi-GAE, an unsupervised bidirectional generative auto-encoder based on bidirectional generative adversarial network (BiGAN). First, we introduce two terms that enhance information expansion in decoding to follow human visual models and to improve semantic-relevant feature representation capability in encoding. Furthermore, we embed a generative adversarial network (GAN) to improve representation while ensuring convergence. The experimental results show that Bi-GAE achieves competitive results in both generation and representation with stable convergence. Compared with its counterparts, the representational power of Bi-GAE improves the classification accuracy of high-resolution images by about 8.09%. In addition, Bi-GAE increases structural similarity index measure (SSIM) by 0.045, and decreases Fréchet inception distance (FID) by in the reconstruction of 512*512 images. 展开更多
关键词 auto-encoder adversarial network image reconstruction and generation feature representation
原文传递
Super-resolution reconstruction of single image for latent features
7
作者 Xin Wang Jing-Ke Yan +3 位作者 Jing-Ye Cai Jian-Hua Deng Qin Qin Yao Cheng 《Computational Visual Media》 CSCD 2024年第6期1219-1239,共21页
Single-image super-resolution(SISR)typically focuses on restoring various degraded low-resolution(LR)images to a single high-resolution(HR)image.However,during SISR tasks,it is often challenging for models to simultan... Single-image super-resolution(SISR)typically focuses on restoring various degraded low-resolution(LR)images to a single high-resolution(HR)image.However,during SISR tasks,it is often challenging for models to simultaneously maintain high quality and rapid sampling while preserving diversity in details and texture features.This challenge can lead to issues such as model collapse,lack of rich details and texture features in the reconstructed HR images,and excessive time consumption for model sampling.To address these problems,this paper proposes a Latent Feature-oriented Diffusion Probability Model(LDDPM).First,we designed a conditional encoder capable of effectively encoding LR images,reducing the solution space for model image reconstruction and thereby improving the quality of the reconstructed images.We then employed a normalized flow and multimodal adversarial training,learning from complex multimodal distributions,to model the denoising distribution.Doing so boosts the generative modeling capabilities within a minimal number of sampling steps.Experimental comparisons of our proposed model with existing SISR methods on mainstream datasets demonstrate that our model reconstructs more realistic HR images and achieves better performance on multiple evaluation metrics,providing a fresh perspective for tackling SISR tasks. 展开更多
关键词 image superresolution reconstruction denoising diffusion probabilistic model normalized flow adversarial neural network variational auto-encoder
原文传递
Defense of Massive False Data Injection Attack via Sparse Attack Points Considering Uncertain Topological Changes 被引量:2
8
作者 Xiaoge Huang Zhijun Qin +2 位作者 Ming Xie Hui Liu Liang Meng 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第6期1588-1598,共11页
False data injection attack(FDIA)is a typical cyber-attack aiming at falsifying measurement data for state estimation(SE),which may incur catastrophic consequences on cyber-physical system operation.In this paper,we d... False data injection attack(FDIA)is a typical cyber-attack aiming at falsifying measurement data for state estimation(SE),which may incur catastrophic consequences on cyber-physical system operation.In this paper,we develop a deep learning based methodology for detection,localization,and data recovery of FDIA on power systems in a coherent and holistic manner.However,the multi-modal probability distributions of both measurements and state variables in SE due to ever-changing operating points and structural/topological changes pose great challenges in detecting and localizing FDIA.To address this challenge,we first propose an enhanced attack model to launch massive FDIA on limited access points.Second,we train an auto-encoder(AE)with a Bayesian change verification(BCV)classifier using N-1 contingencies to detect FDIA with unseen N-k operational topologies.Third,to avoid model collapse caused by multi-modal measurement distribution,an AE-based generative adversarial network(GAN)is derived to generate a diverse candidate set of normal measurement vectors with various operational topologies.Finally,we develop a pattern match algorithm to localize and recover the falsified measurements and state variables by comparing the falsified measurement vectors with the normal measurement vectors in the candidate set.Case studies with IEEE benchmark systems and a modified 415-bus China Southern Grid system are provided to validate the proposed methodology.It shows that the proposed methodology achieves an average 95%accuracy for detection,over 80%accuracy for localization of FDIA,and recovers the measurement and state variables close to their true values. 展开更多
关键词 False data injection attack auto-encoder generative adversarial network state estimation cyber security
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部