Chemical compositions of rainwater collected in three stations in Taihu Lake in Jiangsu Province, China between March and May 2003 were analyzed through numerical simulations and field observation data. In terms of av...Chemical compositions of rainwater collected in three stations in Taihu Lake in Jiangsu Province, China between March and May 2003 were analyzed through numerical simulations and field observation data. In terms of average ion deposition rate in spring at the air/water interface, of all anions, that of so4^2- was the largest followed by YO3^-, whereas among all cations, Ca^2+ concentration and the rate was the largest, and then NH4^+ was the next. The correlation of ion concentration indicated that the catchment of the lake has been artificially polluted considerably. Using backward trajectory analysis, the raining water in the stations in Taihu Lake was classified. In spring, marine-originated rain is the main contribution to this area, counting for 92.7% of the total precipitation, in which so4^2-, NO3^- and NH4^+ contributed 89.2%, 88.1%, and 88.3% respectively to the total spring-rain chemicals, whereas land-originated rains contributed in a small amount. However, the ion concentration in the land-originated rain was higher and acidic, causing considerable harm to local ecosystem. The analysis of backward trajectory analysis shows that three types of air masses influenced the chemical composition of the lake water, namely, air mass from NE direction, air mass from SW direction, and local air mass. Although the local air masses often produced small rainfall amount, but the nature of high ion concentration and high acidity impacted the local ecosystem remarkably. The ion concentration and rainfall from long-distance boreal air mass are clearly greater than those in austral air.展开更多
基金Supported by the Cooperation Project Study on Impacts of Atmospheric Nitrogen and Phosphorous Input on Water Quality granted by the NSFC (No.40110734) and The Grants Committee of Hong Kong (No.N-HKUST612/01)
文摘Chemical compositions of rainwater collected in three stations in Taihu Lake in Jiangsu Province, China between March and May 2003 were analyzed through numerical simulations and field observation data. In terms of average ion deposition rate in spring at the air/water interface, of all anions, that of so4^2- was the largest followed by YO3^-, whereas among all cations, Ca^2+ concentration and the rate was the largest, and then NH4^+ was the next. The correlation of ion concentration indicated that the catchment of the lake has been artificially polluted considerably. Using backward trajectory analysis, the raining water in the stations in Taihu Lake was classified. In spring, marine-originated rain is the main contribution to this area, counting for 92.7% of the total precipitation, in which so4^2-, NO3^- and NH4^+ contributed 89.2%, 88.1%, and 88.3% respectively to the total spring-rain chemicals, whereas land-originated rains contributed in a small amount. However, the ion concentration in the land-originated rain was higher and acidic, causing considerable harm to local ecosystem. The analysis of backward trajectory analysis shows that three types of air masses influenced the chemical composition of the lake water, namely, air mass from NE direction, air mass from SW direction, and local air mass. Although the local air masses often produced small rainfall amount, but the nature of high ion concentration and high acidity impacted the local ecosystem remarkably. The ion concentration and rainfall from long-distance boreal air mass are clearly greater than those in austral air.